Genetic and Non-Genetic Risk Factors for Development of Chronic Pain

Roger B. Fillingim, Ph.D. University of Florida, and North Florida/South Georgia VA Health System

Supported by NIH/NINDS Grants NS41670, NS42754, AG033906, DE017018 and GCRC Grant RR00082

- Conceptual & methodological considerations
- Non-genetic risk factors for chronic pain
- Genetic risk factors for chronic pain
- Conceptual model and future directions

What Kind of Chronic Pain?

- Post-operative chronic pain
- Other iatrogenic chronic pain (chemotherapy-induced)
- Disease associated (e.g. PHN, DPN)
- Post-Traumatic
- Insidious

What Kind of Chronic Pain (part 2)?

- Neuropathic
- Musculoskeletal
- Visceral

(I'll use examples of Back Pain, CWP, TMD, postsurgical pain)

Types of Risk Factors

Dispositional

Genetics Demographics - age, sex, race

Personality Depression

Situational

Stress Mood/Coping Transient biological processes

Exposures

Trauma/Injury - surgery, MVA, infection Stressors/Occupation Smoking/Diet

Methodologic Considerations

• Sample Sizes

- Incidence rates, allele frequencies

Base rate problems

- Frequency of exposure/risk factor variables
- Frequency of pain in general population
- Follow-up period
- Risk Factors: mechanisms or markers?

- Conceptual & methodological considerations
- Non-genetic risk factors for chronic pain
- Genetic risk factors for chronic pain
- Conceptual model and future directions

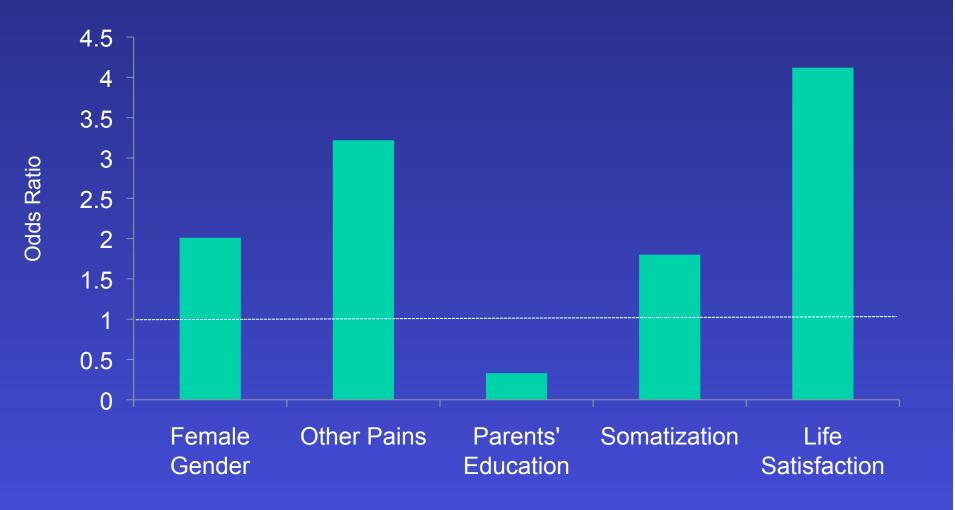
Psychological Factors and Risk for Low Back Pain (Linton, 2000)

- 1. Psychosocial variables associated with reported onset of back and neck pain and transition from acute to chronic pain disability. (Level A evidence)
- 2. Psychosocial variables generally have more impact than biomedical or biomechanical factors on back pain disability. (Level A)
- 3. Cognitive factors (attitudes, cognitive style, fear avoidance beliefs) (Level A)
- 4. Self-perceived poor health (Level A)
- 5. Depression, anxiety, negative emotions (Level A)
- 6. Personality and traits (Level C)
- 7. Sexual and/or physical abuse (Level D)
- 8. Psychosocial factors as risk factors for long-term pain and disability. (Level A)

Level A: evidence from two or more good-quality prospective studies Level C: inconclusive data Level D: no studies available meeting criteria

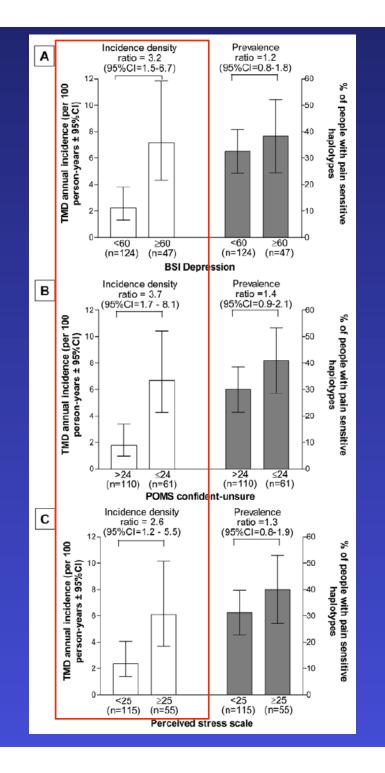
Occupational Factors and Risk for Low Back Pain (Linton, et al, 2001)

Factor	Evidence
Job Satisfaction	Strong Evidence (13/14 studies)
Monotonous Work	Strong Evidence (4/6 studies)
Work Relations	Strong Evidence (5/6 studies)
Perceived Demands	Strong Evidence (3/3 studies)
Control	Moderate Evidence (2/2)
Work Pace	Moderate Evidence (2/3)
Occupational Stress	Strong Evidence (3/3 studies)
Perceived Ability to Work	Strong Evidence (3/3 studies)
Belief that Work is Dangerous	Moderate Evidence (2/2)

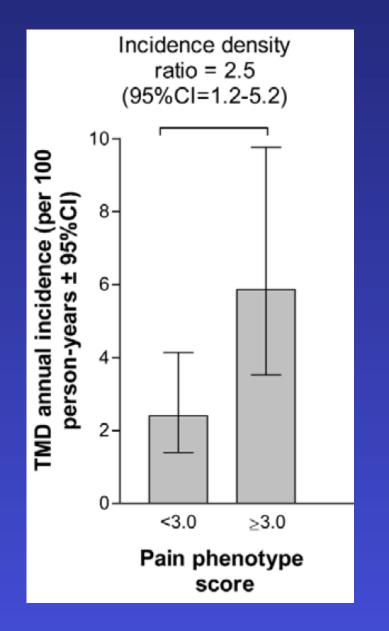

Spinal Mechanical Load and Risk for Low Back Pain (Bakker, et al, 2009)

Factor	Evidence
Heavy Physical Work	Conflicting Evidence
Standing/Walking at Work	Strong Evidence for no association
Sitting at Work	Strong Evidence for no association
Whole Body Vibration at Work	Conflicting Evidence
Bending/Twisting at Work	Conflicting Evidence
Nursing Tasks	Conflicting Evidence
Leisure Sport/Exercise	Strong Evidence for no association
Leisure Activities	Conflicting Evidence

Risk Factors for Chronic Widespread Pain


Category	Specific Risks	Reference
Demographics	Gender and older age (in kids) Gender (in adults) SES (mediated by psych factors)	Mikkelson, et al, 2008 Davies, et al, 2009 Davies, et al, 2009
Childhood Events	Financial difficulties Maternal death Institutional Care Multiple somatic symptoms	Jones, et al, 2007; 2009
HPA Axis Function	Low Morning Cortisol High Evening Cortisol High post-dex. cortisol	McBeth, et al, 2007
Psychological Distress	Depression	Mikkelson, et al, 2008; McBeth, et al, 2007
Pain Sensitivity	Tender Point Count (but not PPT)	Gupta, et al, 2007

Risk Factors for Temporomandibular Disorders in Adolescents (LeResche, et al, 2007)


Psychological Risk Factors for TMD (Slade, et al, 2007)

Individuals scoring in the upper tertile of depression (A) and somatization (C) and the lower tertile of confidence (B) showed significantly higher incidence of new onset TMD. This finding is independent of COMT haplotype.

Pain Sensitivity as a Risk Factor for TMD (Slade, et al, 2007)

Individuals scoring in the upper tertile of pain sensitivity showed significantly higher incidence of new onset TMD. The pain phenotype score was a composite index of 13 different measures of pain sensitivity, across three stimulus modalities (heat, pressure, ischemic).

Chronic Post-Operative Pain (Kehlet, Jensen, & Woolf, 2006)

	Estimated incidence of chronic pain	Estimated chronic severe (disabling) pain (>5 out of score of 10)	US surgical volumes (1000s)†
Amputation ²	30–50%	5–10%	159 (lower limb only)
Breast surgery (lumpectomy and mastectomy) ³	20–30%	5–10%	479
Thoracotomy47	30-40%	10%	Unknown
Inguinal hernia repair ⁸⁻¹⁰	10%	2–4%	609
Coronary artery bypass surgery ¹¹⁻¹³	30-50%	5–10%	598
Caesarean section ¹⁴	10%	4%	220

*Gall bladder surgery not included, since preoperative diagnosis of pain specifically from gall bladder is difficult and persistent postoperative pain could therefore be related to other intra-abdominal disorders. †National Center For Health Statistics, Ambulatory and Inpatients Procedures, USA, 1996.

Table 1: Estimated incidence of chronic postoperative pain and disability after selected surgical procedures*

Post-Thoracotomy Pain (Pluijms, et al, 2006)

78 (52%) patients reported chronic pain after thoracotomy.

Table 2

Incidence of chronic post-thoracotomy pain (CPTP) as a function of the length of time post-surgery, expressed in 6 or 12 month intervals.

Years post-operatively	Patients with CPTP	%	Years post-operatively	Patients with CPTP	%
0.5–1.0 1.0–1.5	19/31 11/21	61 52	0.5–1.5	30/52	58
1.5–2.0 2.0–2.5	10/26 20/29	38 69	1.5–2.5	30/55	55
2.5–3.0 3.0–3.5	10/22 8/19	45 42	2.5-3.5	18/41	44
Total	78/149	42 52	Total	78/149	52

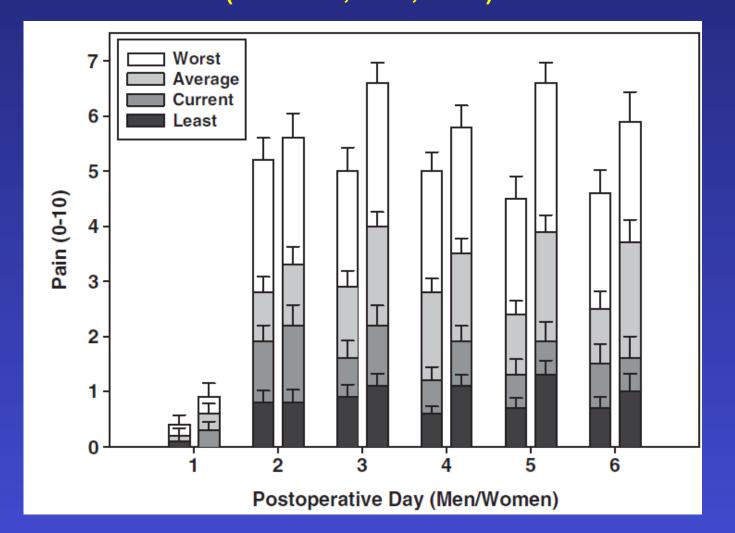
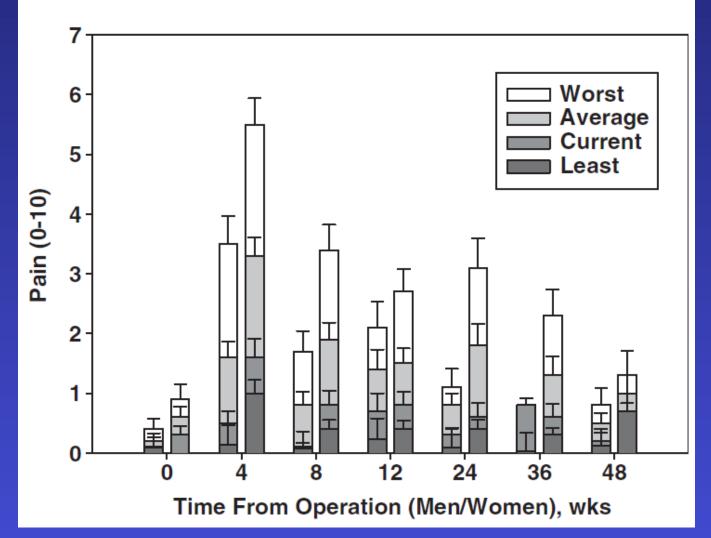

Retrospectively, a greater proportion of patients with chronic pain reported moderate to severe acute pain. Also, trend toward younger age in the pain group.

Table 3

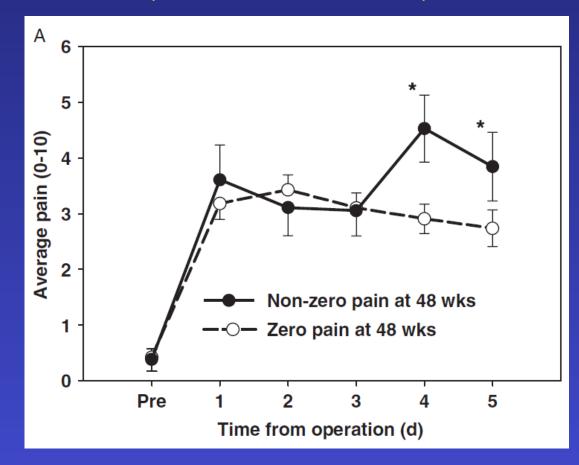
Relationship between severity of acute post-operative pain and presence of chronic post-thoracotomy pain (CPTP).

	CPTP (<i>n</i> = 78)	No CPTP (<i>n</i> = 71)
No acute pain	12 (15%)	27 (38%)
Mild acute pain	13 (17%)	16 (23%)
Moderate acute pain	23 (29%)	16 (23%)
Severe acute pain	30 (38%)	12 (17%)


Gender and Post-Thoracotomy Pain (Ochroch, et al, 2006)

Women (right bar) reported more acute pain than men (left bar)

Gender and Post-Thoracotomy Pain


(Ochroch, et al, 2006)

Women (right bar) reported more long-term pain than men (left bar)

Acute Post-Op Pain in Patients Reporting Post-Thoracotomy Pain at 48 Weeks

(Gottschalk, et al, 2008)

Acute pain was greater post-op days 4 and 5 among patients who reported pain at 48 weeks. Also, patients with pain at 48 weeks were younger than those with no pain.

Reduced Endogenous Pain Modulation as a Risk Factor for Chronic Post-Thoracotomy Pain (Yarnitsky, et al, 2008)

DNIC predicted development of chronic pain (pain rating > 20) 7 months after thoracotomy

Table 3

Reduced model based on only DNIC and acute pain as predictors of chronic pain

Term	Chi-square	р	Odds ratio	OR lower 95% CI	OR upper 95% CI
Intercept	2.47	0.12			
DNIC	9.20	0.0024	0.52	0.33	0.77
Acute pain	9.20	0.0024	1.80	1.28	2.77

The odds ratios are based on changes of 10 U for both DNIC and acute pain, i.e., 10-point changes on scales ranging from -100 to 100 and 0 to 100, respectively.

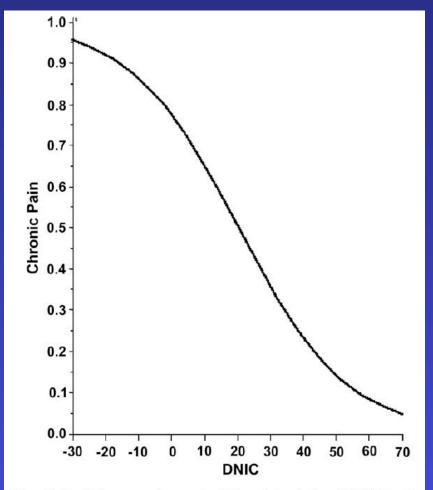


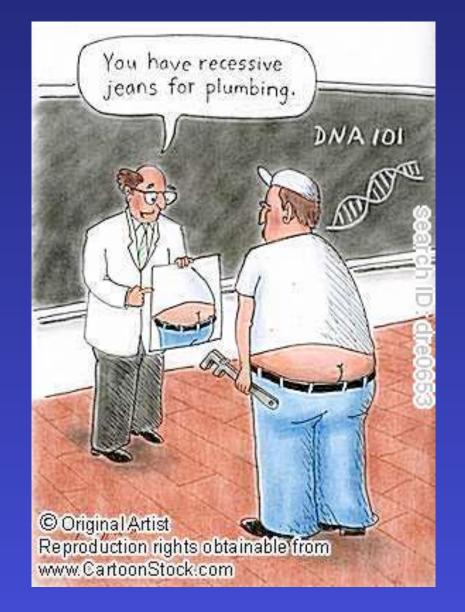
Fig. 2. Logistic regression probability plot relating DNIC to the probability of development of chronic pain.

Chronic Post-Mastectomy Pain

(Poleshuck, et al, 2006)

Table 3. Logistic Regression Model for Presence of Chronic Pain Following Breast Cancer Surgery (n = 93)

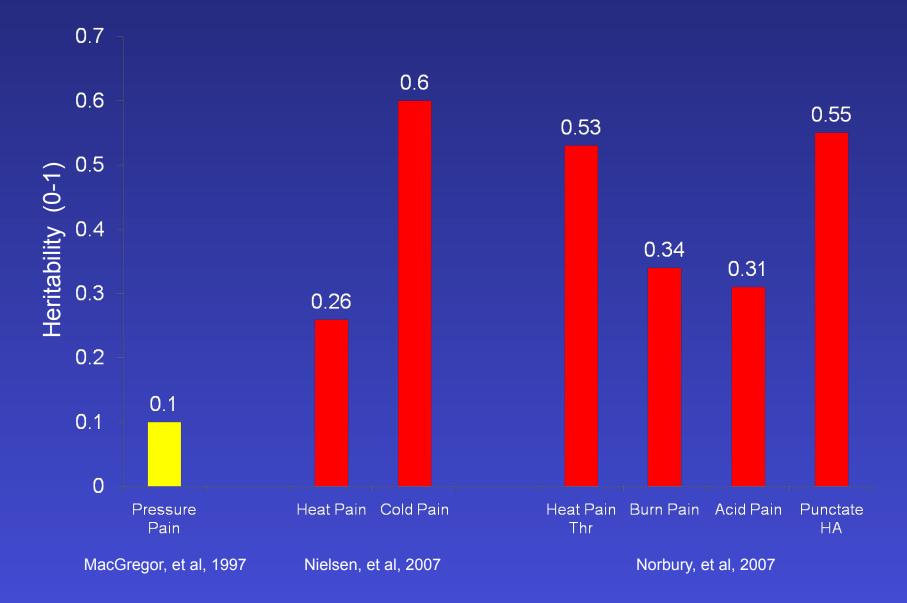
<i>Risk Factor Variabi</i> Age (yrs) Breast cancer history Preoperative breast pain	Table 4. Linear F of Chronic Pain Surgery (n = 93	Follow			nsity	95% CONFIDENCE INTERVAL 0.91–0.99 0.17–1.55 0.28–2.54
Surgery type Cancer status	RISK FACTOR VARIABLE	В	Standard Error	BETA*	Р	0.28–2.54 0.87–9.14 0.28–3.54
Radiation therapy Marital status Clinically meaningful acu	Age (yrs) Breast cancer history Preoperative breast pain	.00 44 .17	.01 .31 .33	.03 13 .06	.79 .17 .60	0.84–7.76 0.68–5.55 0.85–7.76
	Surgery type Cancer status Radiation therapy Marital status	.68 16 .91 .22	.34 .37 .32 .30	.24 05 .31 .07	.047 .67 .005 .46	
	Clinically meaningful acute pain	.82	.29	.28	.007	


48.4% women reported surgery-related pain at 3-month follow-up

Predictors of Chronic Postoperative Pain (Hinrichs-Rocker, et al, 2008)

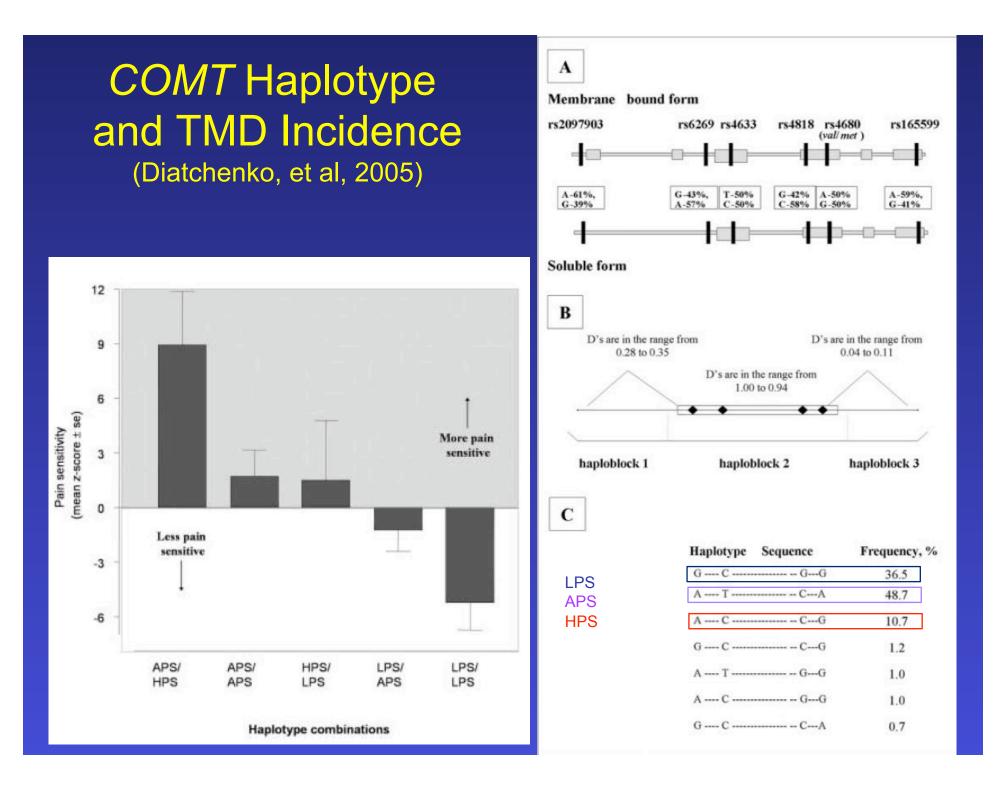
		Hernia	Thoracotomy	Cholecystectomy	Breast surgery	Spine surgery	Knee surgery	Other surgeries
# Studies # Patients Incidences chronic		11 44–5506 9–46	8 30–1348 20–57	5 100–186 13–26	8 93–569 17–52	8 17–257 30–70	3 77–860 13–23	5 22-848 16-49
	Fact	or			Yes	s	No	
	Fem	ale Sex			5		18	
	Your	iger Age			17		18	
	Anxi	ety			5		6	
	Depi	ression			8		6	
	Psyc	chic Vulner	ability (Neu	uroticism)	4		1	
	Stre	SS			3		1	
	Late	Return to	Work		3		0	

- Conceptual & methodological considerations
- Non-genetic risk factors for chronic pain
- Genetic risk factors for chronic pain
- Conceptual model and future directions

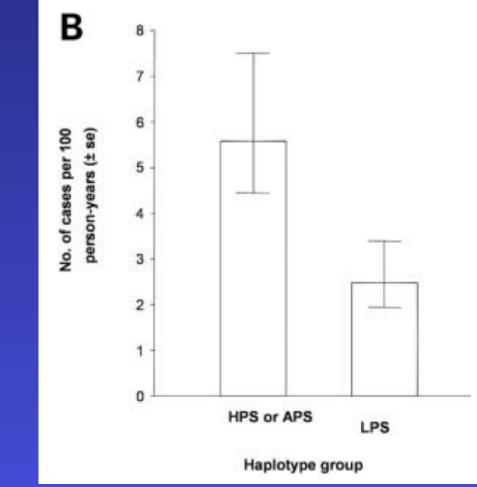

Advantages of Genetic Markers as Risk Factors

- No chicken and egg problem
- Highly reliable
- May reveal pathophysiology
- Can indicate new biological treatment targets

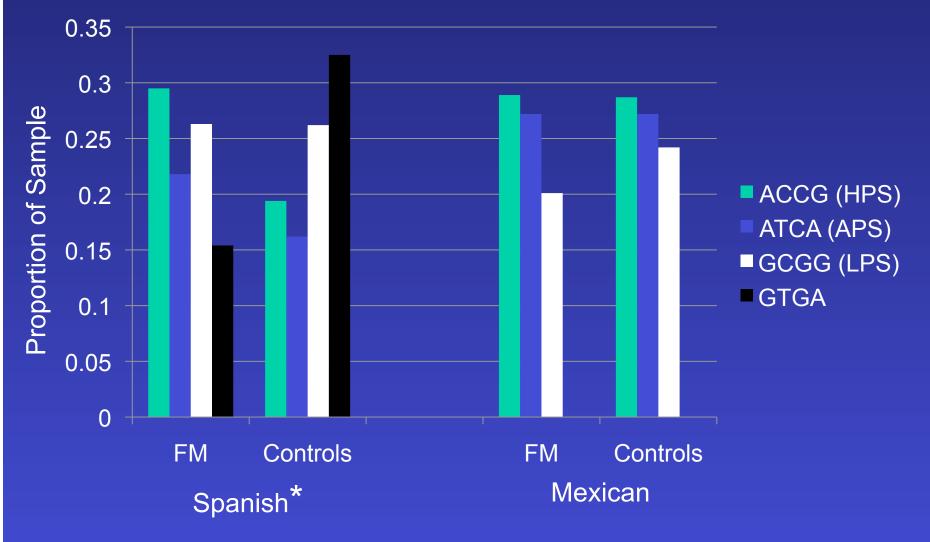
Heritability of Clinical Pain Conditions


Reference	Pain Condition	Study Design	Heritability Estimate
Mulder, et al 2003; Nyholt, et al 2004	Migraine	Twin Studies	.3457
Fejer et al, 2006; MacGregor et al, 2004	Neck Pain	Twin Studies	.3658
Hestbaek et al, 2004; MacGregor et al, 2004	Low Back Pain	Twin Studies	.4068
Kato et al, 2006	Widespread Pain	Twin Studies	.4854
Zondervan, et al 2005	Pelvic Pain	Twin Study	.41
Hakim, et al, 2002	Carpal Tunnel	Twin Study	.46

Heritability of Experimental Pain Measures

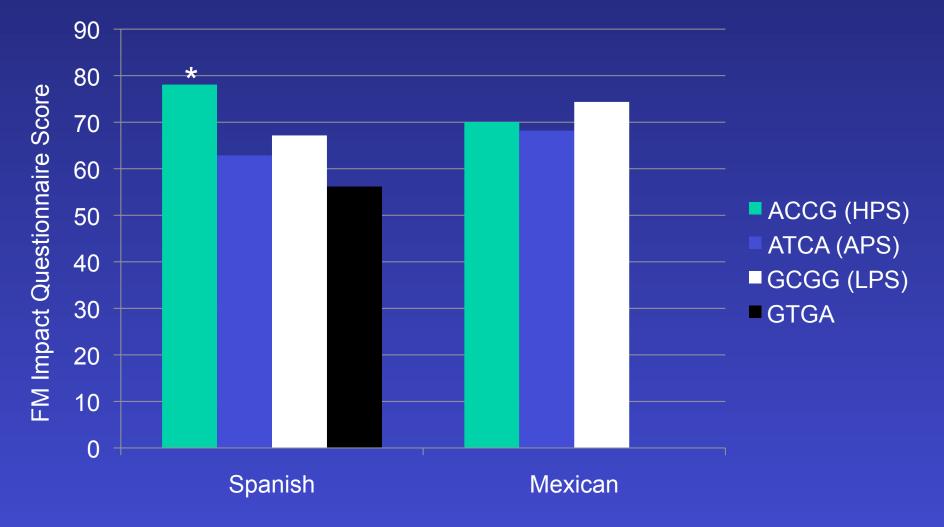

Catechol-O-methyl-transferase Gene (COMT) and Pain Sensitivity?

- COMT metabolizes catecholamines
- Common *met¹⁵⁸val* SNP of *COMT*: *met/met* have low COMT activity; *val/val* have high COMT activity
- Val/val genotype was associated with higher pain-related mu-opioid receptor binding and reduced pain response to hypertonic saline; *met/met* was associated with lower binding (Zubieta, et al, 2003)



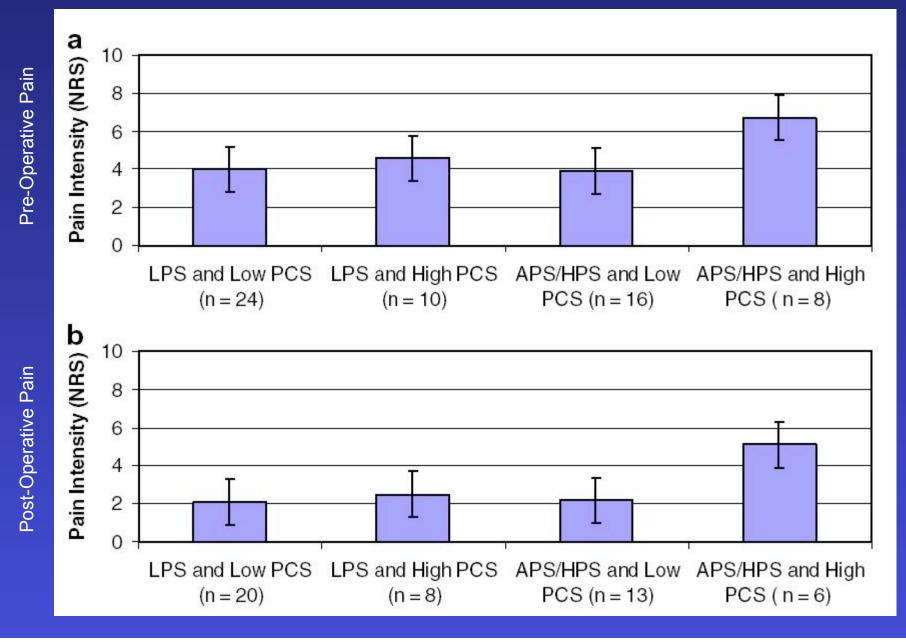
COMT Haplotype and TMD Incidence (Diatchenko, et al, 2005)

Individuals with at least one low pain sensitive (LPS) haplotype were at lower risk for development of TMD compared to those with no LPS haplotypes.



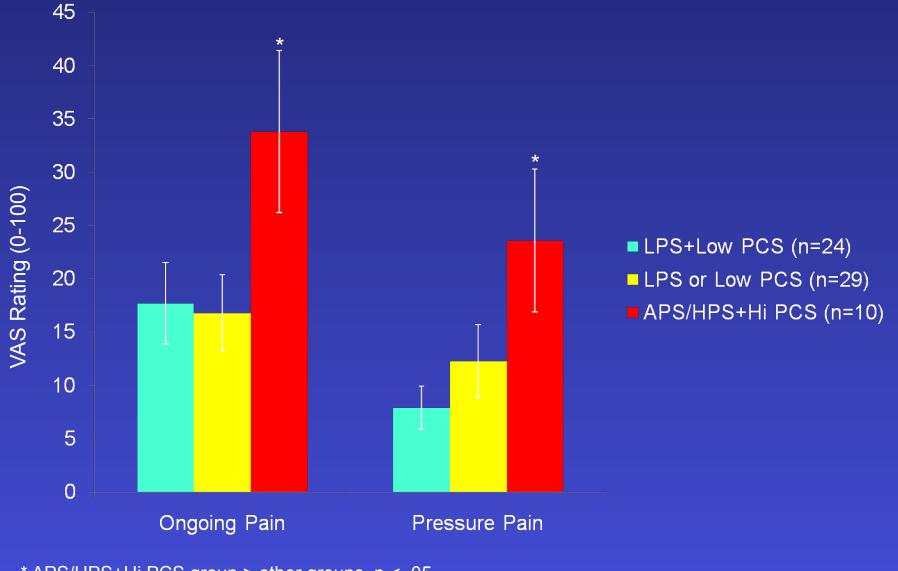
COMT Haplotypes among Mexican and Spanish FM Patients and Controls (Vargas-Alarcon, et al, 2007)

Haplotypes constructed from 4 COMT SNPs: rs6269, rs4633, rs4818, rs4680


COMT Haplotypes and FIQ Scores Mexican and Spanish FM Patients (Vargas-Alarcon, et al, 2007)

Combined Influences of *COMT* and Catastrophizing on Shoulder Pain (George, et al, 2008)

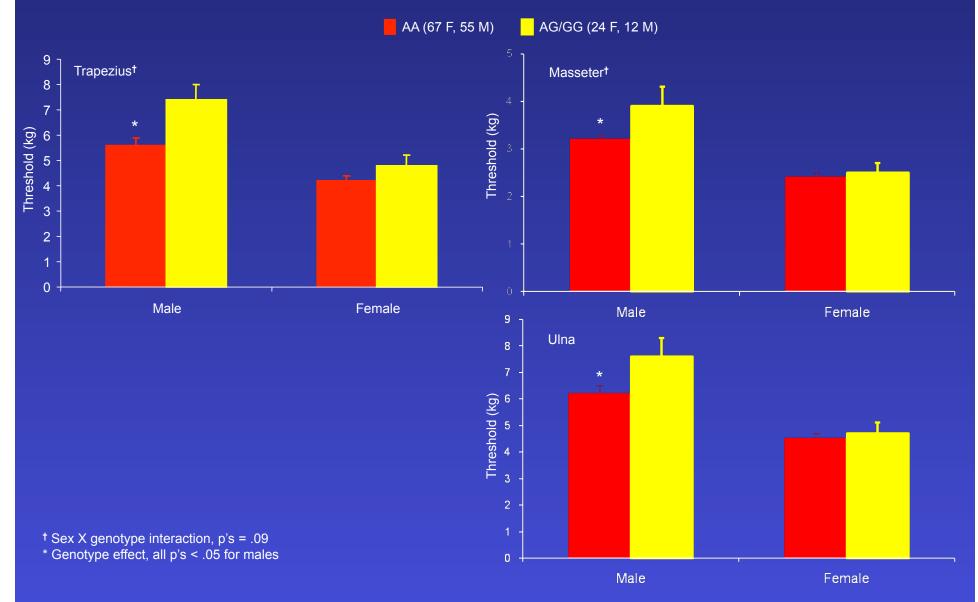
- 58 (24 F, 34 M) patients with chronic shoulder pain, undergoing arthroscopic surgery
- Pre-operative testing
 - Psychological questionnaires (catastrophizing)
 - Psychophysical testing
 - Buccal swab for DNA (COMT diplotypes from Diatchenko, et al, 2005)
- Arthroscopic surgery
- Post-operative testing (3-5 months later)


Combined Influences of Pain Catastrophizing and COMT Haplotype

Replication in DOMS Model of Shoulder Pain (George, et al, 2008)

- 63 (35 F, 28 M) healthy young (age=20.9) participants
- Delayed Onset Muscle Soreness Protocol with Kin-Com isokinetic dynamometer
 - Assessed VAS ongoing pain 24, 48, 72 hours later
 - Assessed VAS pain in response to 4 kg/cm² pressure to rotator cuff tendon insertion
- Psychological questionnaires (catastrophizing)
- Buccal swab for DNA (COMT diplotypes from Diatchenko, et al, 2005)

Catastrophizing and COMT in Experimental Shoulder Pain



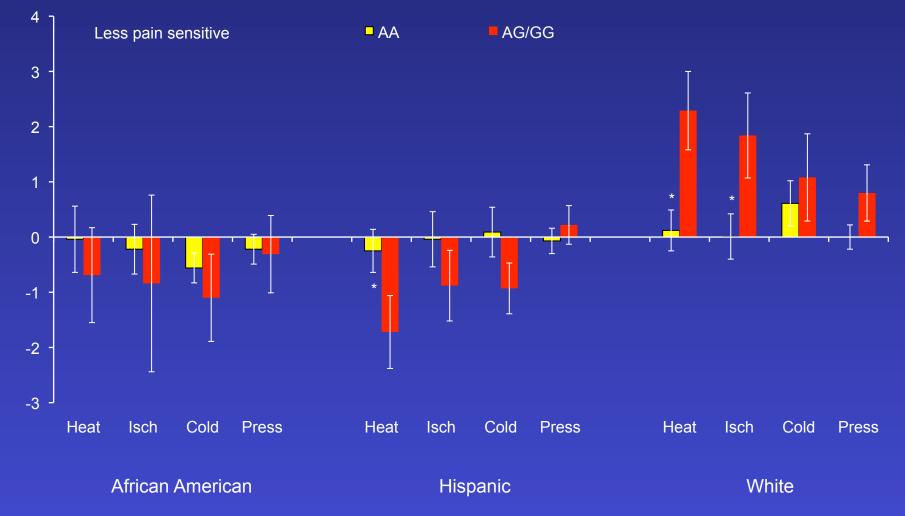
* APS/HPS+Hi PCS group > other groups, p < .05

Is the mu-Opioid Receptor Gene (*OPRM1*) Associated with Baseline Pain Sensitivity?

- Uhl (1999) suggested OPRM1 was a strong candidate for a "pain gene"
- The A118G variant mu receptor shows greater binding affinity for beta-endorphin (Bond, et al, 1998)
- We studied baseline pain sensitivity in 167 (96 F, 71 M) individuals and determined A118G genotype using PCR

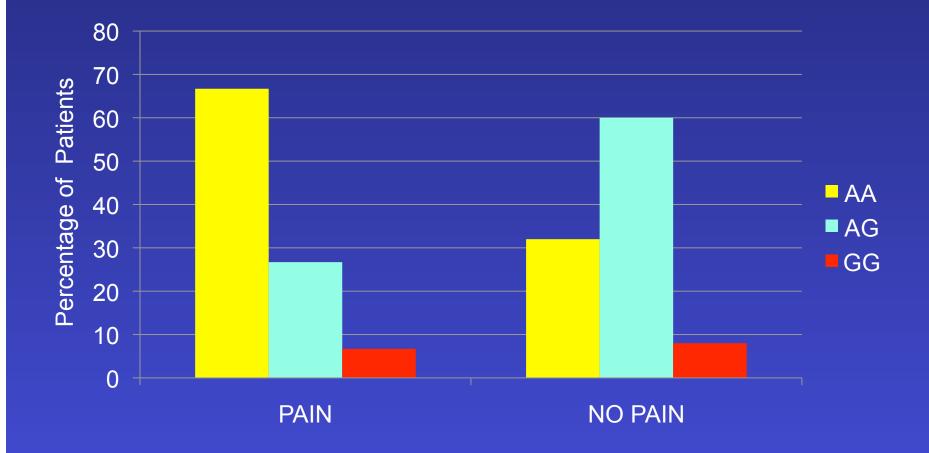
OPRM1 A118G Genotype and Pressure Pain Thresholds among Females and Males

OPRM1 A118G Genotype and Pain Responses in a Second Cohort

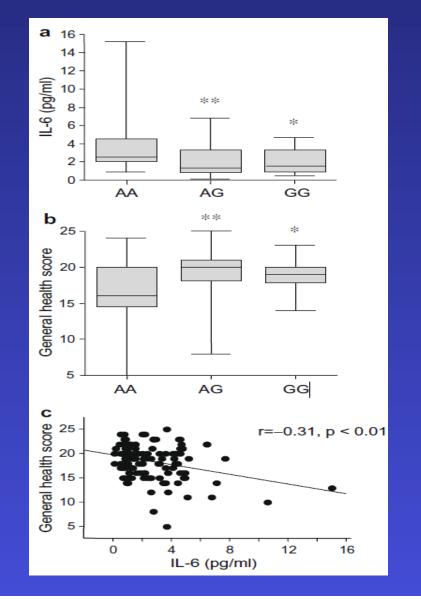

all p's > .05

But, this was a multi-ethnic cohort...

	AA	AG	GG
African American	75 (92.6%)	6 (7.4%)	0 (0%)
Hispanic-Whites	57 (72.2%)	21(26.6%)	1 (0.4%)
Non-Hispanic Whites	63 (71.6%)	24 (27.3%)	1 (0.4%)


p < .05

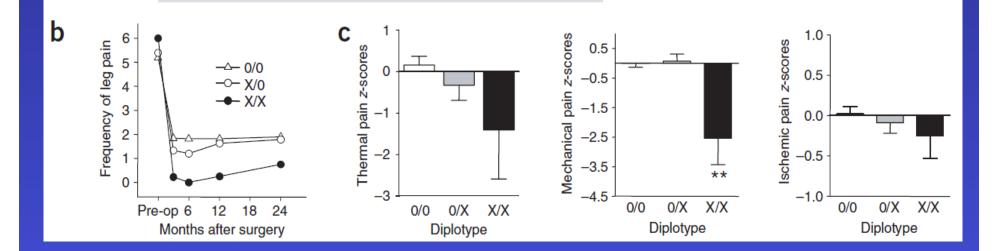
OPRM1 A118G Genotype and Pain Responses Across Ethnic Groups


* Significant genotype effect

OPRM1 and Foot Ulcer Pain in Diabetics (Cheng, et al, 2009)

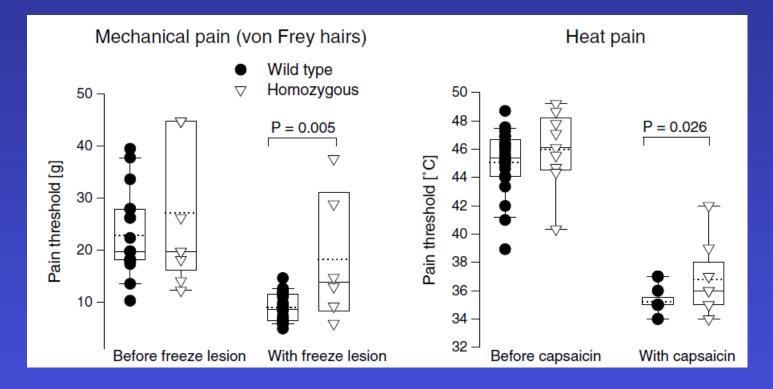
OPRM1, Cytokines and General Health (Matsunaga, et al, 2009)

Carriers of the 118G allele had lower serum levels of IL-6 and higher self-reported general health compared to AA carriers.



GTP Cyclohydrolase Gene (GCH1) (Tegeder, et al, 2006)

- Enzyme involved in production of 6(R)-L-*erythro*-5,6,7,8tetrahydrobiopterin (BH4).
- BH4 is a key cofactor in the synthesis of several pain neuromodulators including catecholamines, serotonin and nitric oxide, and BH4 induces pain hypersensitivity.
- GTP cyclohydrolase and BH4 were increased after nerve injury and inhibition of GTP cyclohydrolase reduced neuropathic & inflammatory pain in rats


GTP Cyclohydrolase Gene (GCH1) (Tegeder, et al, 2006)

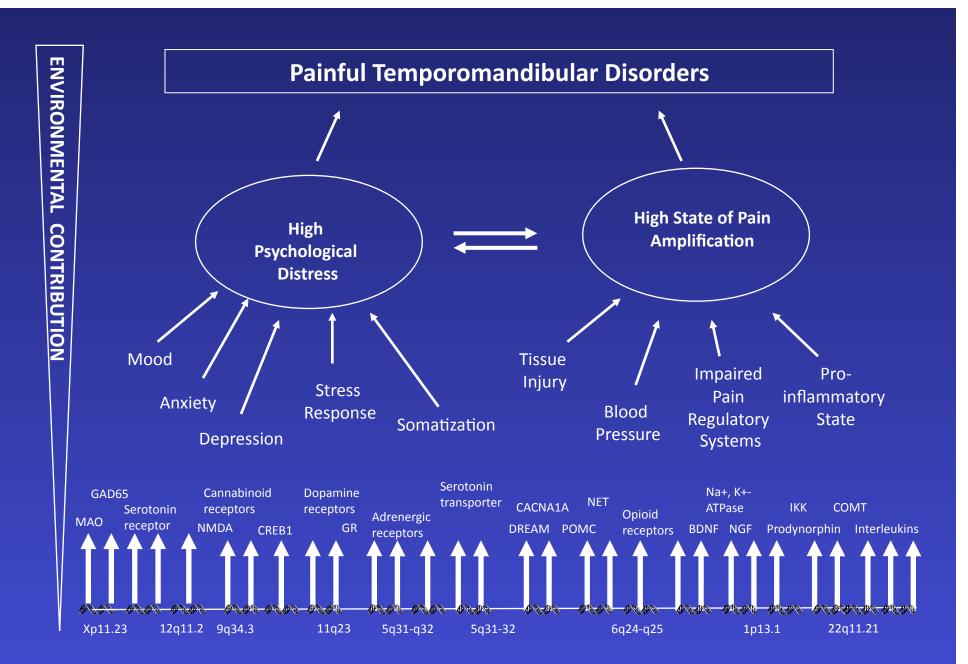
A pain protective haplotype of *GCH1* was associated with reduced frequency of leg pain after discectomy (B) and with lower sensitivity to experimental pain in 2 cohorts (C)

GTP Cyclohydrolase Gene (GCH1) (Tegeder, et al, 2008)

The pain protective haplotype of *GCH1* was associated with reduced hyperalgesia following a freeze lesion and following capsaicin application.

GTP Cyclohydrolase Gene (GCH1) (Campbell, et al, 2009)

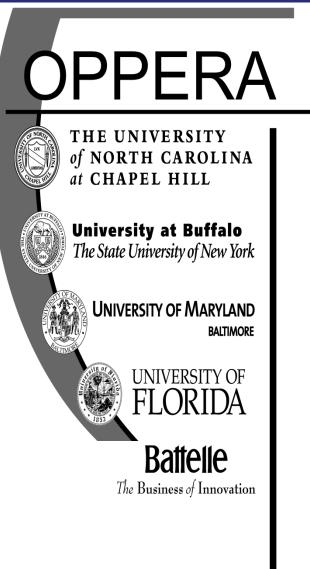
Three of the SNPs identified by Tegeder, et al were significantly associated with pain ratings following application of topical capsaicin. The linear combination of SNPs accounted for 35% of the variance in pain ratings.



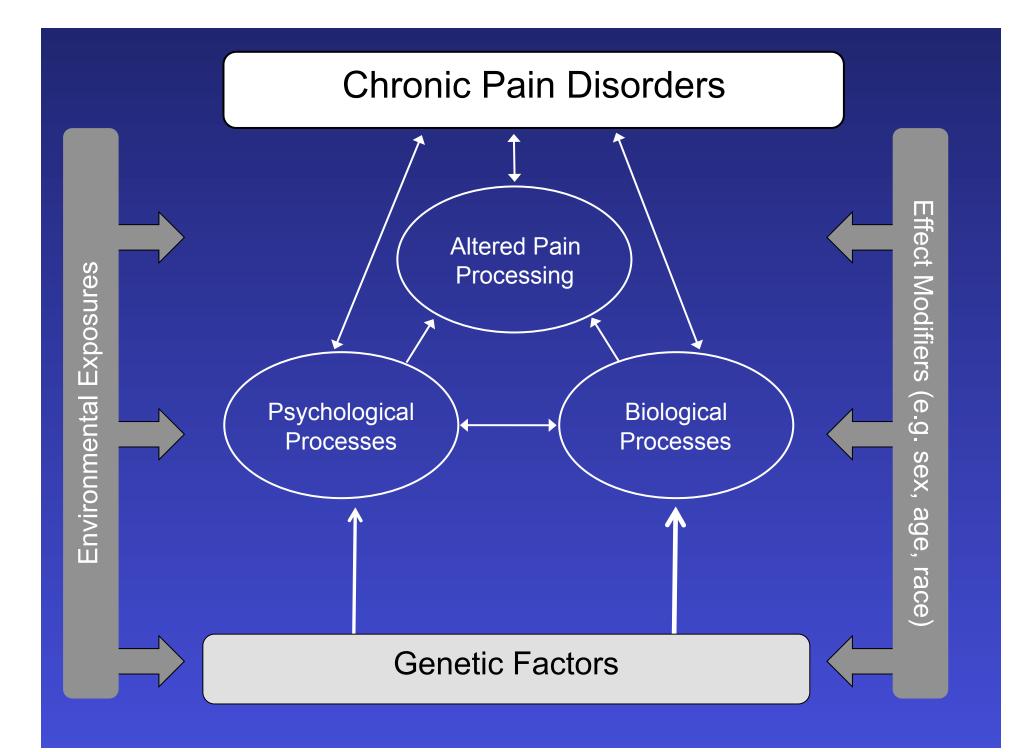
Association of IL6 With Low Back Pain

- A haplotype (GGGA) constructed from 4 SNPs was more frequent in patients with discogenic sciatica compared to controls (Noponen-Hietala, et al, 2005)
- Patients with GGGA haplotype reported more days with back/leg pain and more sick days over a threeyear follow-up (Karppinen, et al, 2008)

- Conceptual & methodological considerations
- Non-genetic risk factors for chronic pain
- Genetic risk factors for chronic pain
- Conceptual model and future directions



Diatchenko, et al, 2005


OPPERA Study (PI, Dr. William Maixner)

Orofacial Pain: Prospective Evaluation and Risk Assessment

Central Hypothesis: Pain amplification and psychological factors, both of which are influenced by genetic variants and environmental events, represent causal influences for TMD onset and persistence.

Funded by NIDCR-U01DE017018

Summary

- Multiple non-genetic factors predict future onset of chronic pain (demographics, psychosocial)
- Likely genetic risk factors include genes encoding proteins involved in response to injury (e.g. *IL6, GCH1*) and central pain modulation (e.g. *COMT, OPRM1*)
- Genetic and non-genetic risk factors interact
- Implications for trial design include:
 - sample size considerations (allele frequency)
 - choice of patient population
 - phenotypic measures (QST, psychosocial factors)

Thank You