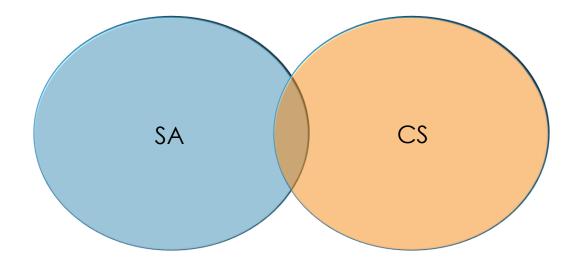
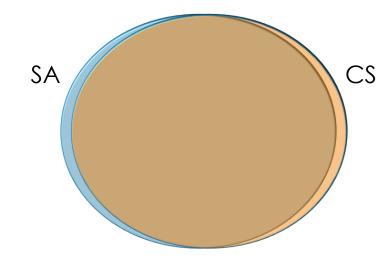


THE JOHNS HOPKINS HOSPITAL


Implications of somatosensory amplification for the design of chronic pain clinical trials

Claudia M. Campbell, Ph.D. Associate Professor Psychiatry and Behavioral Sciences


Terms/Implications

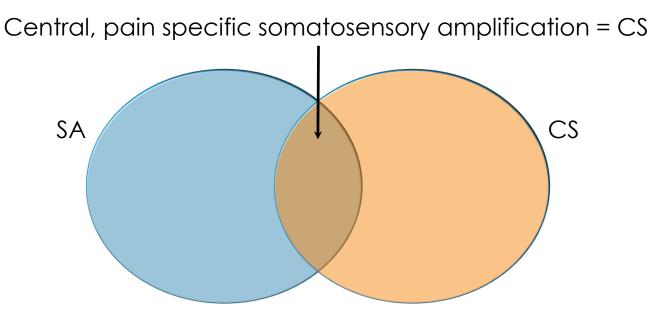
- Is there a distinction? (different labels for the same process?)
- Are the terms useful?
- Does it matter?
 - Is there value in disentangling general sensitivity/physical/pain specific/psychological issues?
- How do we measure one vs. the other?
- If one improves will the rest get better too?
- What are the implications for clinical trials?
 - Patient samples
 - Baseline measures (stratify?)/measure throughout trial?
 - Outcome measures

Overlap?

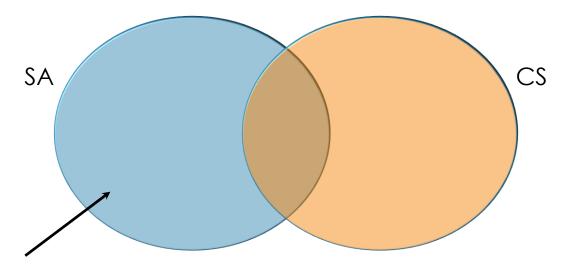
Overlap?

Definitions

Central Sensitization


- Increased responsiveness of <u>nociceptive</u> neurons in the central nervous system to their normal or subthreshold afferent input. (IASP taxonomy)
- Not "related" to cognitive or emotional factors.

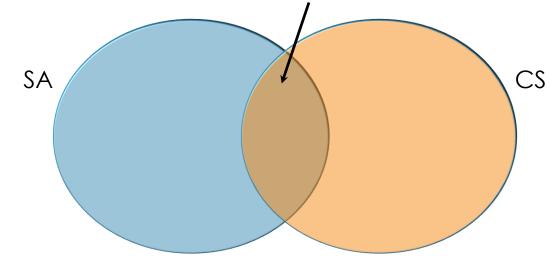
Somatosensory Amplification


- No IASP definition
- Somatosensory refers to information about the body per se including visceral organs, rather than information about the external world (e.g., vision, hearing, or olfaction).
- Somatosensory amplification (SA) is a tendency to perceive normal somatic and visceral sensations as being relatively intense, disturbing and noxious. Sensitization also implies that it is an active process that results from various stimuli, eg, trauma. On the other hand, the term sensitivity is a clinical manifestation of sensitization, exemplified by sensitivity or amplification response to various nociceptive, nonnociceptive, and environmental stimuli . (Yunus 2008)
- "Somatosensory amplification appears to refer to the intensification of perceived external and internal threats to the integrity of the body ("somatic threat amplification") rather than amplification of perceived or actual bodily events only." (Köteles & Witthöft, 2017)
- Central somatosensory nervous system**
- Peripheral somatosensory nervous system

'Heightened awareness of and attention to internal sensations and symptoms'

Overlap?

Overlap?



SSAS is associated with objective physiological measurements like EEG (Nakao et al., 2007)

Overlap?

Sensory Responsiveness Questionnaire associated with PNP

(Weissman-Fogel et al., 2018)

Sensory Processing Sensitivity (>2K; include pain ~40) Sensory over-responsiveness; Sensory alteration; Somatic awareness, Anxious arousal, Somatic arousal

How are GS and CS related?

Systematic Review

What Are the Predictors of Altered Central Pain Modulation in Chronic Musculoskeletal Pain Populations? A Systematic Review

Jacqui Clark, MSc1,2,3, Jo Nijs, PhD2,3, Gillian Yeowell, PhD1, and Peter Charles Goodwin, PhD1

Conclusions: Premorbid and acute stage high sensory sensitivity and/or somatization are the strongest predictors of altered central pain modulation in chronic musculoskeletal pain to date. This is

SSA/GSS

- Factor Analysis
- Chronic Pelvic Pain (n=424), mixed pain (n=200) and healthy folks (n=415)
- 18 Somatic Awareness subscale of the Complex Medical Symptom Inventory
- 4 sensory items from the Sensory Sensitivity subscale
- Sleep (PROMIS)
- Depression (HADS)

Schrepf et al., 2018 (Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network)

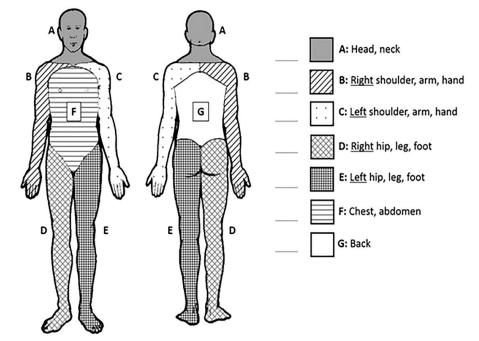
GSS

Factor 1:

- Broad amplification/ awareness of sensory processes
- Both somatosensory (internal) and external

Factor 2:

- Severity of clinical pain
- Nonspecific CNS symptoms


Measure	Factor 1	Factor 2
Number of pain sites	0.547	0.152
Somatic Awareness	0.820	0.006
Sensory Sensitivity	0.702	-0.046
Fatigue	0.005	0.802
Sleep Disturbance	0.012	0.640
Depressive Symptoms	-0.169	0.852
Cognitive Dysfunction	0.009	0.599
Pain Severity	-0.067	0.468
Factor Correlation:	.633	

Schrepf et al., 2018

GSS

Brief General Sensory Sensitivity Screen

The body map below is divided into seven regions. Please check each region where you have experienced pain during the <u>last week</u>.

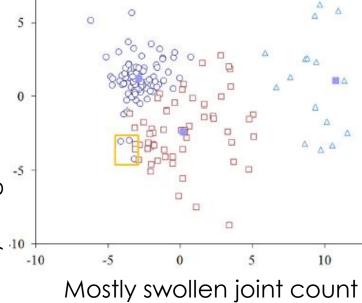
Please read the following list of symptoms. If you have had any of these symptoms for at least <u>three (3) months</u> in the past year, please mark the appropriate box.

Dry mouth	
Rapid heart rate	
Problems with balance	
Sensitivity to certain chemicals, such as perfumes, laundry detergents, gasoline and others	
Sensitivity to sound	
Frequent sensitivity to bright lights	

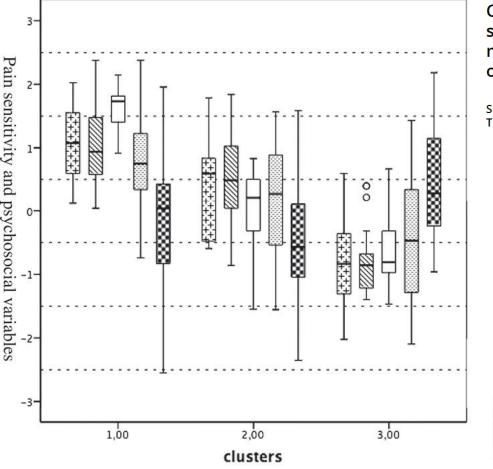
Schrepf et al., 2018

Profiling

Subgrouping of rheumatoid arthritis patients based on pain, fatigue, inflammation and psychosocial factors


A

Yvonne C. Lee, MD, MMSc¹, Michelle L. Frits, BA¹, Christine K. lannaccone, MPH¹, Michael E. Weinblatt, MD¹, Nancy A. Shadick, MD, MPH¹, David A. Williams, PhD², and Jing Cui, MD, PhD¹


Cluster 1 Lowest pain, swollen counts and psych issues
 Cluster 2 Lower objective findings, higher WPI and more psych issues
 Cluster 3 Higher objective findings, moderate/high psych issues
 Center

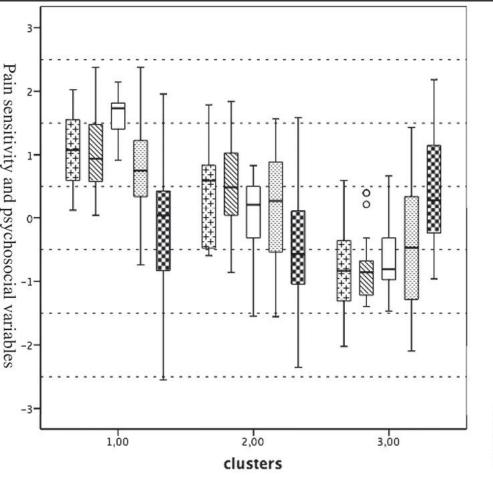
Characteristic	Cluster 1 (N = 89)	Cluster 2 (N = 57)	Cluster 3 (N = 23)	<i>P</i> -value ^b
Swollen joint count	0.0 (0.0–1.0)	2.0 (0.0–4.0) ^c	12.0 (10.0–14.0) ^{d,e}	<0.0001
BPI pain intensity	3.0 (2.0-4.0)	3.0 (2.0–5.0) ^c	3.0 (2.0–5.0)	0.03
Fatigue	20.0 (10.0–30.0)	70.0 (50.0–80.0) ^c	60.0 (25.0–80.0) ^d	<0.0001
Sleep problems	27.2 (16.1-41.1)	38.3 (27.2–46.7) ^c	35.6 (17.5-47.8)	0.009
HADS Depression	3.0 (1.0-5.0)	4.0 (1.0–7.0) ^c	5.0 (2.0-8.0) d	0.004
Illness burden	1.0 (0.0–3.0)	2.0 (1.0–3.0) ^c	1.0 (0.0–2.0) ^e	0.06
Catastrophizing	6.0 (1.0-12.0)	12.0 (5.0–21.0) ^c	9.0 (3.0–18.0)	< 0.0001
				0014

Lee et al., 2014

Profiling (general sensitivity)

Cluster subgroups based on overall pressure pain sensitivity and psychosocial factors in chronic musculoskeletal pain: Differences in clinical outcomes

Suzana C Almeida, Steven Z George, Raquel D. V Leite, Anamaria S Oliveira & Thais C Chaves


Cluster 1: High pain sensitivity and high psychosocial distress (n=12) **Cluster 2**: High pain sensitivity and intermediate psychosocial distress (n=39) **Cluster 3**: Low pain sensitivity and low psychosocial distress (n=29)

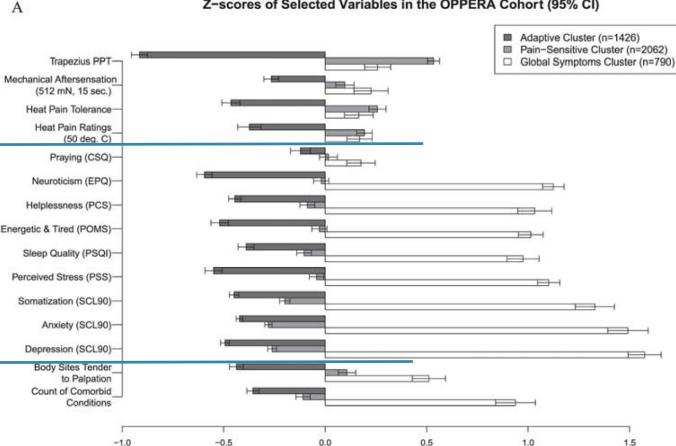
PPT anatomical sites

Anterior cervical Upper trapezius Second rib Lateral epicondyle Knee joint interline Suboccipital muscle Supraspinatus muscle Greater trochanter Gluteal Thenar site

Almeida et al., 2018

Profiling (general sensitivity)

More pain and disability


Cluster 1: High pain sensitivity and high psychosocial distress (n=12) **Cluster 2**: High pain sensitivity and intermediate psychosocial distress (n=39) **Cluster 3**: Low pain sensitivity and low psychosocial distress (n=29)

Almeida et al., 2018

Identification of clusters of individuals relevant to temporomandibular disorders and other chronic pain conditions: the **OPPERA** study

Profiling

Eric Bair^{a,b,c,*}, Sheila Gaynor^d, Gary D. Slade^{a,e,f}, Richard Ohrbach^g, Roger B. Fillingim^h, Joel D. Greenspanⁱ, Ronald Dubnerⁱ, Shad B. Smith^{a,c}, Luda Diatchenko^j, and William Maixner^{a,c}

Z-scores of Selected Variables in the OPPERA Cohort (95% CI)

Global Symptoms: vastly increased risk and severity of pain and physical/mental dysfunction

Pain-Sensitive: greater sensitivity to exp pain, slightly more psych distress

2017

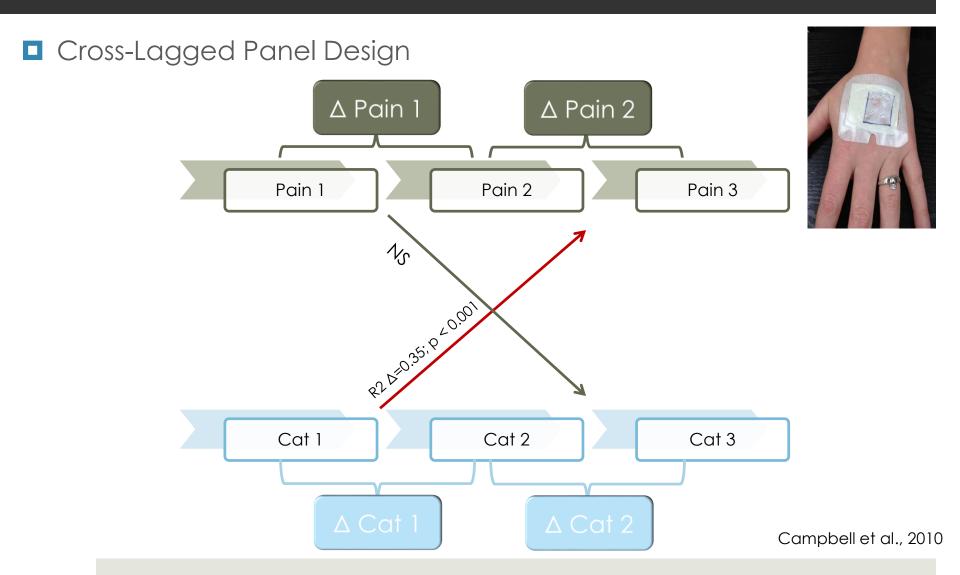
- Is there a distinction? (different labels for the same process?)
- Are the terms useful?
- Does it matter?
 - Is there value in disentangling general sensitivity/physical/pain specific/psychological issues?
- How do we measure one vs. the other? * / Need to measure both?
- If one improves will the rest get better too?

Implications:

- Patient samples
- Baseline measures (stratify?)/measure throughout trial?
- Outcome measures

I was here first!

Pain / Somatosensory Amplification + Psychobehavioral Distress

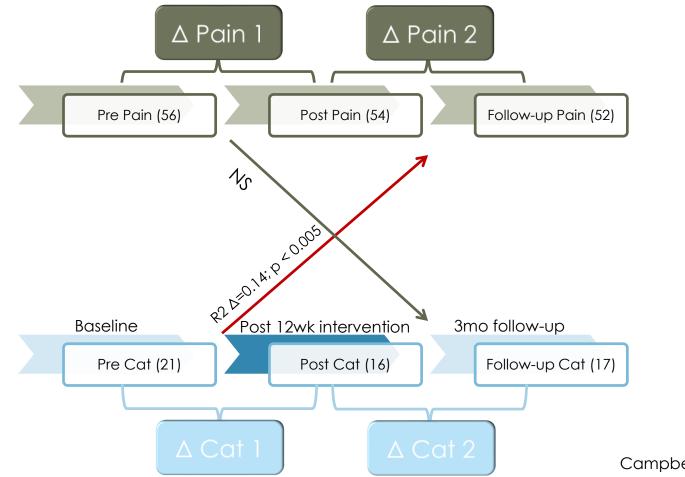

Clinical Pain

©2012 Simon Griffiths

Chicken or egg?

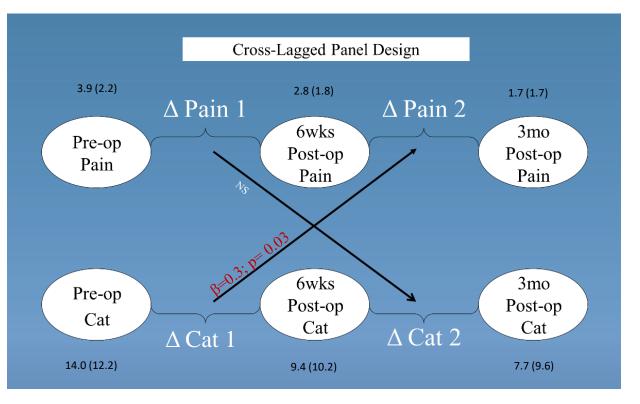
- Psychobehavioral factors contribute to the risk of developing pain and likely aid in maintaining it.
- OPPERA and other studies *postoperative models* suggest pain amplification is a risk factor for developing pain.
- Other studies have challenged this and might suggest pain amplification plays a role in maintenance.
 - *Modify and perpetuate*

Catastrophizing Proceeds Pain


Chicken and eggs?

- Regardless, seems like there is (or maybe are?) common pathway(s)...
- If you treat pain, will the other symptoms improve?

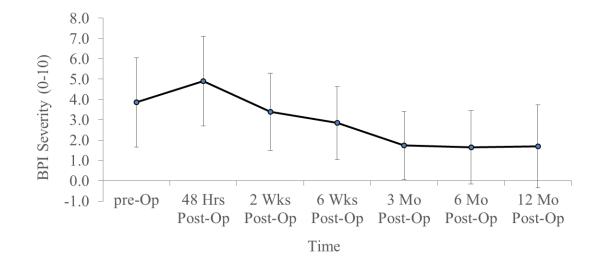
Reduced Catastrophizing Proceeds Reduction in Pain


FM patients in an exercise clinical trial *

Campbell et al., 2012

Chicken or egg?

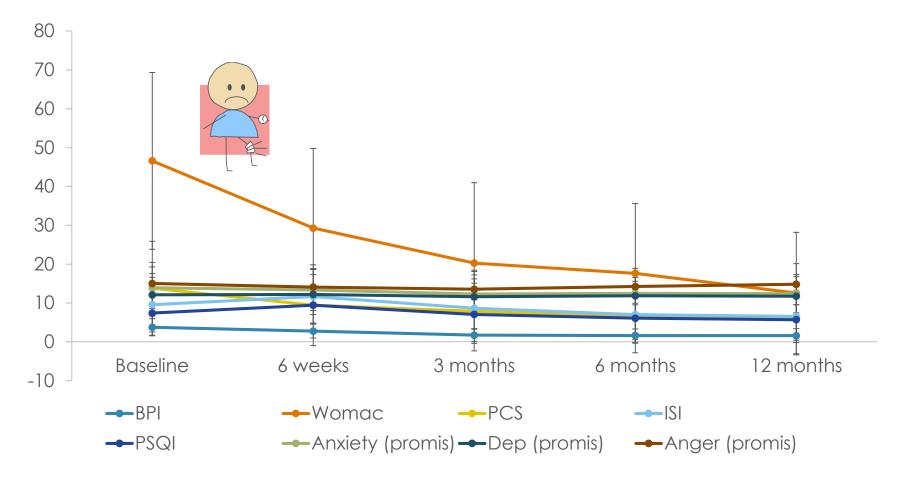
• Reductions in pain catastrophizing proceed reductions in pain following TKR.

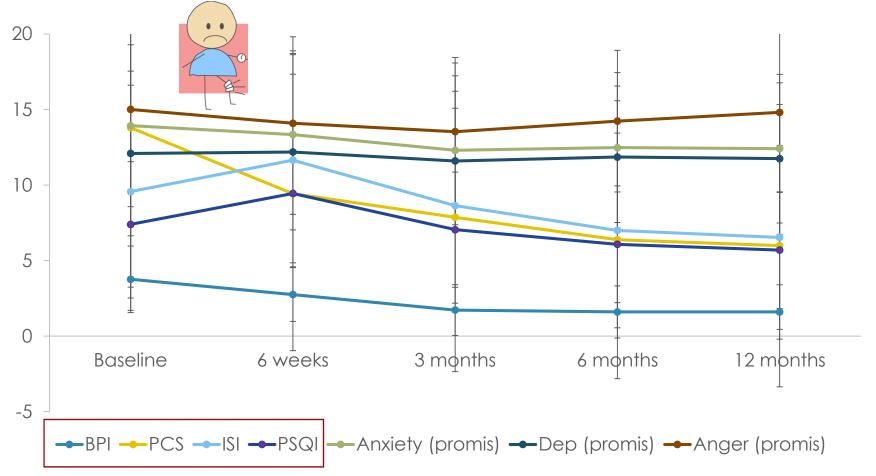

Variables	PCS (BL)	PCS (6wks Post)	PCS (3mo Post)
BPI (BL)	.52**	.09	.17
BPI (6wks Post)	.33**	.50**	.31**
BPI (3mo Post)	.28**	.40**	.43**

TKA Study: Harvard/Hopkins

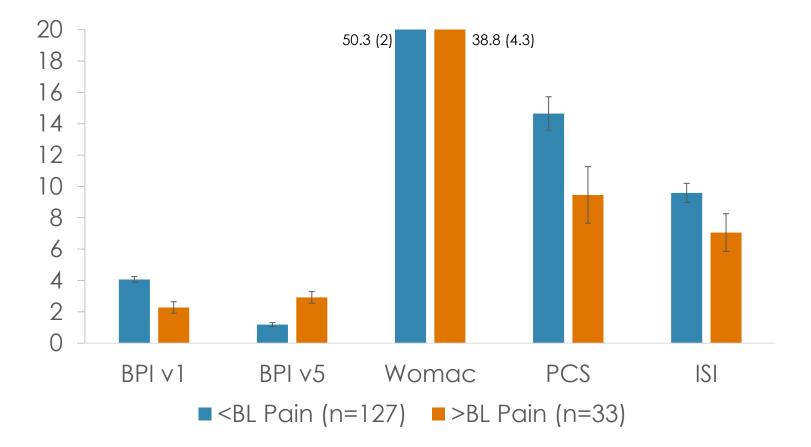
Demographics	Mean (SD) or % (n)	
Sex (% women)	60% (144)	
Race/Ethnicity (%NHW)	88% (211)	*
Age	65.0 (8.2)	

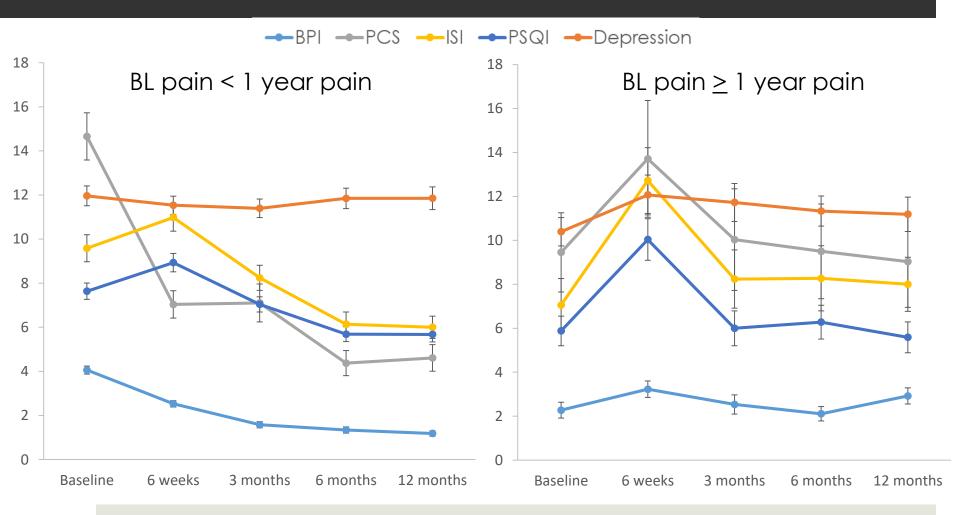
pre-Op 48 Hrs 2 Wks 6 Wks 3 Mo 6 Mo 12 Mo Post-Op Post-Op Post-Op Post-Op Post-Op Post-Op


TKA Study: Harvard/Hopkins


12mo ~25% pain <u>></u> BL

What improves when pain improves?


Pain, Function and Psychobehavioral Factors following TKR


Pain, Function and Psychobehavioral Factors following TKR

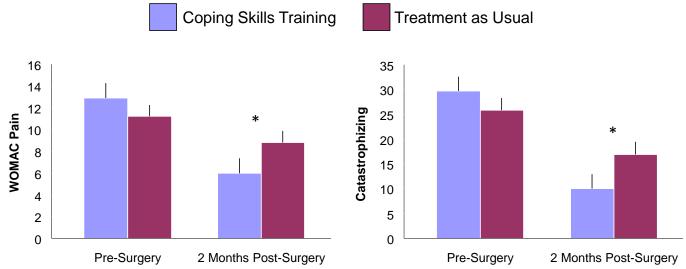
Comparing those whose pain got worse after TKR

Comparing </>BL pain @ 1 year

Chicken and eggs?

- Regardless, seems like there is (or maybe are?) common pathway...
- If you treat pain, will the other symptoms improve?
- If you treat the symptoms, will pain improve?

Catastrophizing Interventions


- Can catastrophizing interventions reduce pain?
- May reduce secondary hyperalgesia
 Healthy people (Salomons et al., 2014)
- CBT and Lumbar Spinal Fusion
 - No differences at 1 year, CBT group lower disability at 3mo Post (Rolving et al., 2015)

CBT in Surgical Patients

18 patients, 8 sessions before TKA

Compared to historical controls:

- Tx group reported greater reductions in pain severity and catastrophizing 2 months post-TKA
- Greater improvement in function

Pain Coping Skills Training for Patients With Elevated Pain Catastrophizing Who Are Scheduled for Knee Arthroplasty: A Quasi-Experimental Study

Daniel L. Riddle, PT, PhD, Francis J. Keefe, PhD, William T. Nay, PhD, Daphne McKee, PhD, David E. Attarian, MD, FACS, Mark P. Jensen, PhD

CBT in Surgical Patients

18 patients, 8 sessions before TKA

Compared to historical controls:

- Tx group reported greater reductions in pain severity and catastrophizing 2 months post-TKA
- Greater improvement in function

Coping Skills Training

A phase III randomized three-arm trial of physical therapist delivered pain coping skills training for patients with total knee arthroplasty: the KASTPain protocol

Daniel L Riddle^{1*}, Francis J Keefe², Dennis Ang³, Khaled J⁴, Levent Dumenci⁵, Mark P Jensen⁶, Matthew J Bair⁷, Shelby D Reed⁸ and Kurt Kroenke⁹

Pain Coping Skills Training for Patients With Elevated Pain Catastrophizing Who Are Scheduled for Knee Arthroplasty: A Quasi-Experimental Study

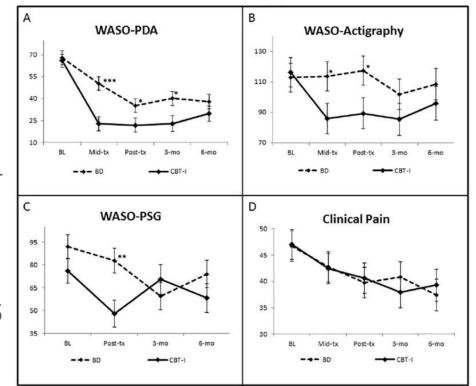
Daniel L. Riddle, PT, PhD, Francis J. Keefe, PhD, William T. Nay, PhD, Daphne McKee, PhD, David E. Attarian, MD, FACS, Mark P. Jensen, PhD

35 30 25 20 15 10 5 0 Pre-Surgery 2 Months Post-Surgery

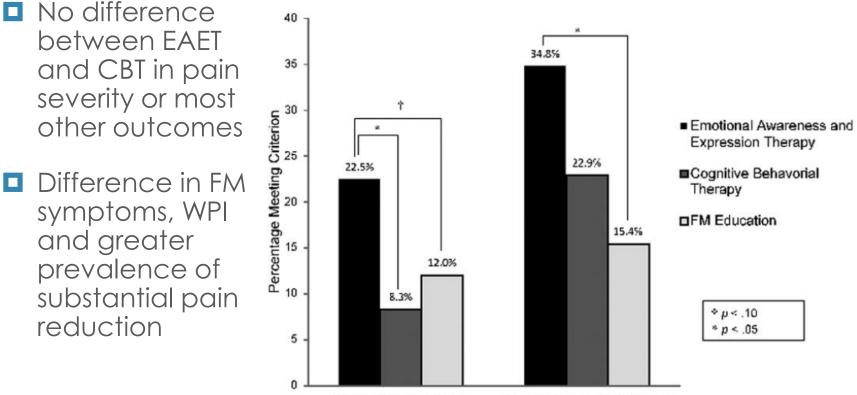
Treatment as Usual

The multisite RCT did not replicate these findings. In 402 patients with high cat, coping skills training did not reduce cat, improve pain or functional outcomes above SOC (Riddle et al., 2019)

Catastrophizing


Sleep?

 Strong bidirectional relationship between sleep and pain.


Sleep?

- CBT-I in 100 patients with KOA
- Substantially improved sleep. Reduced pain but not more than behavioral desensitization (control condition)

Smith et al., 2015

Emotional Awareness and Expression Therapy vs. CBT

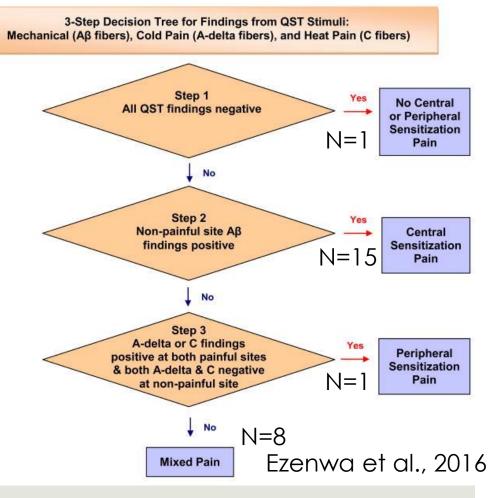
50%+ Pain Reduction

Improved Very Much/Much

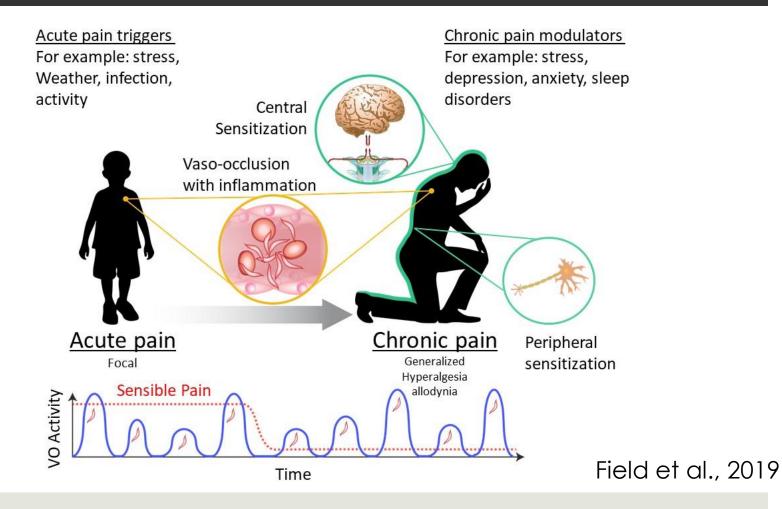
Implications for SA/CS on treatment

- Recommend a way to:
 - Quantify
 - Consolidate?
 - Interpret
 - Make sense of
- See if they influence treatment?
- Or are influenced by treatment?
- Can/Should subgroup based on them?

How to quantify?

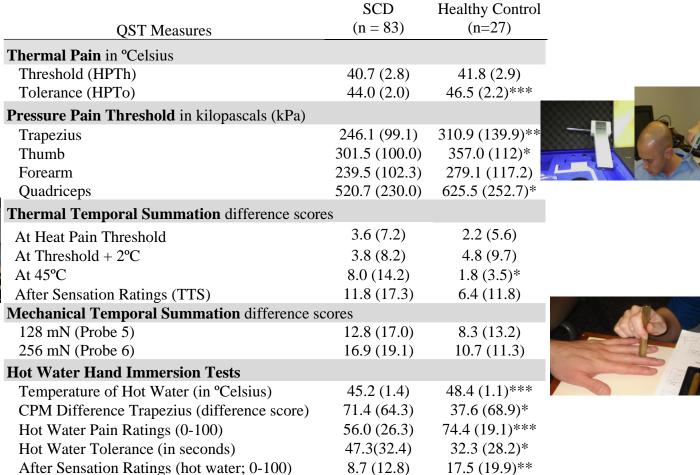

Many sensory, psychological and behavioral measures

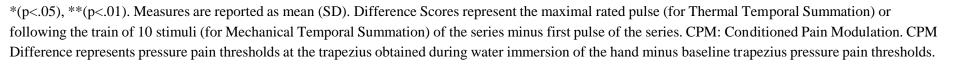
For QST


- QST to areas of pain vs. no pain
- Simple grouping of QST responses cs relevant vs. not
- Pain Modulation Profile

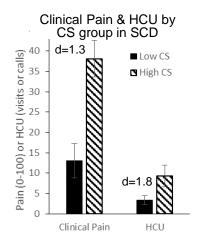
Quantifying amplification

- Thermal thresholds on 3 sites
 - 2 painful
 - 1 not painful site
- Compare to norms
- Determine if sensitivity is widespread or localized over painful sites




Tangent on SCD

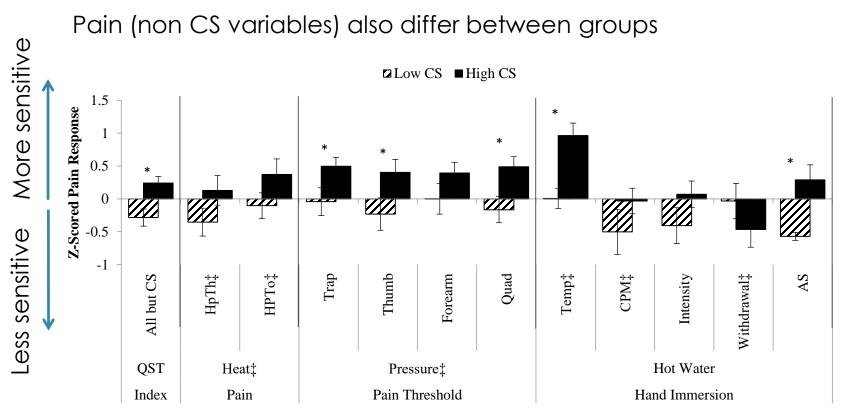
Tangent on SCD


Campbell et al., 2016

Quantifying amplification

- Created a high CS group and a low CS group
- Based on:
 - Temporal summation
 - Thermal @ two different temperatures
 - Mechanical
 - After sensations
 - Values were standardized
 - SCD Z values > 1std dev above the healthy control mean counted for each task
 - Those that had >1 std dev on ≥2/4 tasks were deemed 'High CS'

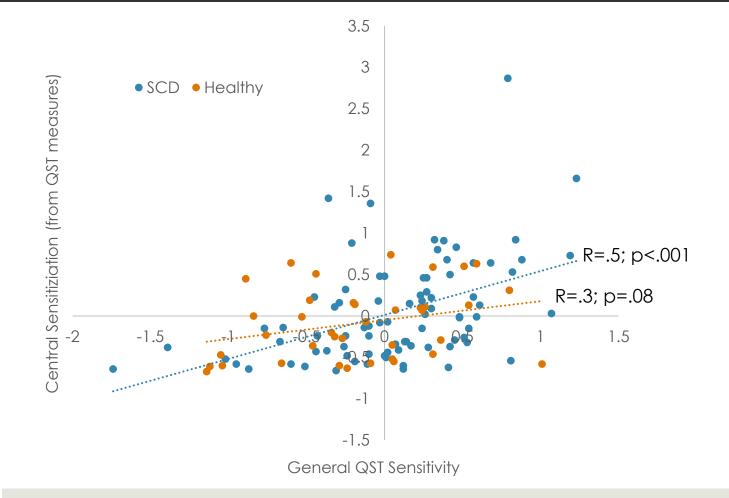
Clinical Variables	Low CS N=17	High CS N=21	p value
Body Mass Index	24.5 (3.2)	27.4 (4.6)	0.04*
Systolic Blood Pressure	112.6 (11.0)	116.0 (14.9)	0.44
SS S-Beta zero No Other Dei	mographic Diff	erences	
Taking Hydroxyurea	35.3% (6)	19.0% (4)	-
Taking long-acting opioids	17.6% (3)	57.1% (12)	0.013*
Taking short-acting opioids	52.9% (9)	85.7% (18)	0.027*


Clinical Pain Variables	Low CS (n=17)	p value		
Pain				
Pain Severity (BPI)	0.9 (1.3)	2.8 (1.8)	0.001***	
Interference (BPI –Extended)	1.5 (2.7)	3.1 (2.4)	0.06	
Pain from PDA (0-100; average over 3 months)	n=16	n=20		
Proportion of PDA's completed (total completed	0.78 (0.2)	0.76(0.2)	0.80	
days/total possible days)	0.78 (0.2)	0.76 (0.3)	0.80	
Non-Crisis Pain	8.8 (14.5)	26.1 (20.5)	0.008**	
VOC Pain	35.6 (23.4)	52.1 (21.0)	0.11	
Average Number of days reporting VOC	0.09 (0.1)	0.23 (0.2)	0.044*	
Average length of Crises	0.8 (1.1)	1.5 (1.0)	0.045*	
Number of calls to providers	1.8 (3.0)	4.5 (6.0)	0.11	
Number of medical visits	1.6 (1.8)	4.9 (6.1)	0.05	
Number of Crises	5.4 (9.2)	12.3 (12.7)	0.08	

Clinical pain, some aspects of VOCs and healthcare utilization differ by group

Psychosocial Variables	Low CS	High CS	p value
From Monthly Calls (average over 12 mo)	n=13	n=18	
Catastrophizing	4.8 (4.7)	17.1 (12.5)	0.002**
Positive Affect	7.2 (1.5)	5.8 (1.4)	0.014*
Negative Affect	2.6 (1.7)	4.1 (1.8)	0.026*

Sleep Variables	Low CS (n=17)	High CS (n=21)	p value
PSQI Components			
1. Subjective Sleep Quality	0.8 (0.5)	1.5 (0.8)	0.007**
2. Sleep Latency	0.9 (0.9)	1.8 (1.1)	0.01*
3. Sleep Duration	0.5 (0.7)	1.3 (1.2)	0.01*
4. Habitual Sleep Efficiency	2.6 (1.0)	2.0 (1.3)	0.10
5. Sleep Disturbance	1.4 (0.7)	2.0 (0.7)	0.006**
6. Use of Sleep Medications	0.1 (0.3)	1.0 (1.2)	0.007**
7. Daytime Dysfunction	0.9 (0.7)	1.3 (0.9)	0.14
Global Score	7.1 (3.1)	10.9 (4.0)	0.003**
ISI	5.4 (6.1)	12.5 (8.2)	0.005**
Sleep from PDA [†] (average over 3 months)			
Sleep Efficiency (%)	89.6% (6.7)	77.1% (17.7)	0.011*
Wake After Sleep Onset (in minutes)	17.5 (24.3)	35.6 (29.5)	0.057
Sleep Onset Latency (in minutes)	16.8 (12.9)	37.4 (25.1)	0.005**
Sleep Duration (in hours)	7.2 (1.2)	7.9 (3.7)	0.53
From Weekly Calls (average over 3 months)			
Sleep Continuity Disturbance	0.9 (.9)	1.9 (1.3)	0.029*
Sleep Duration	6.7 (0.9)	6.2 (1.5)	0.34
From Monthly calls (averaged over 12 months)			
Sleep Continuity Disturbance	1.1 (0.9)	2.2 (1.0)	0.006**
Sleep Duration	6.5 (1.2)	5.7 (1.1)	0.068

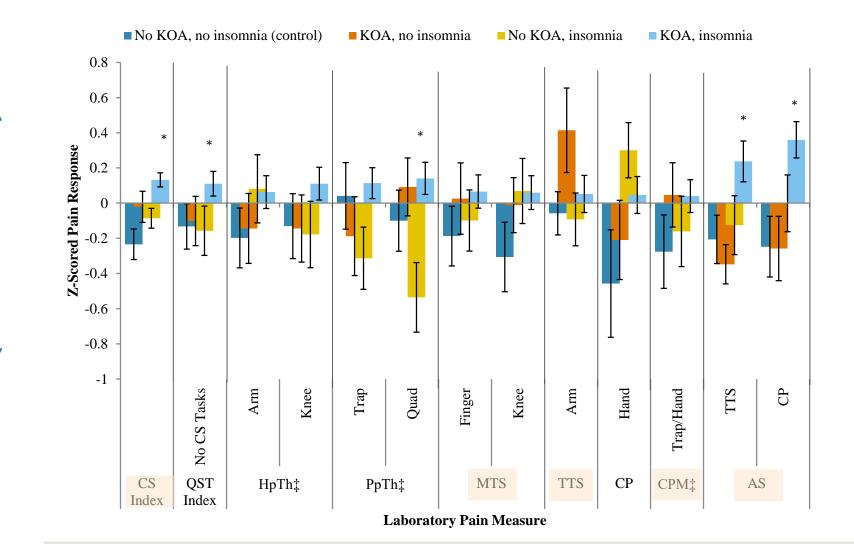

Laboratory Pain Measure

Campbell et al., 2016

Quantifying Amplification

- "Simple" grouping by QST responses
 - Not so simple
- Should we only be assessing CS-related measures?
 - TS
 - AS
 - CPM
- Value in being able to show there isn't widespread/peripheral somatosensory amplification?

Correlation between GS and CS

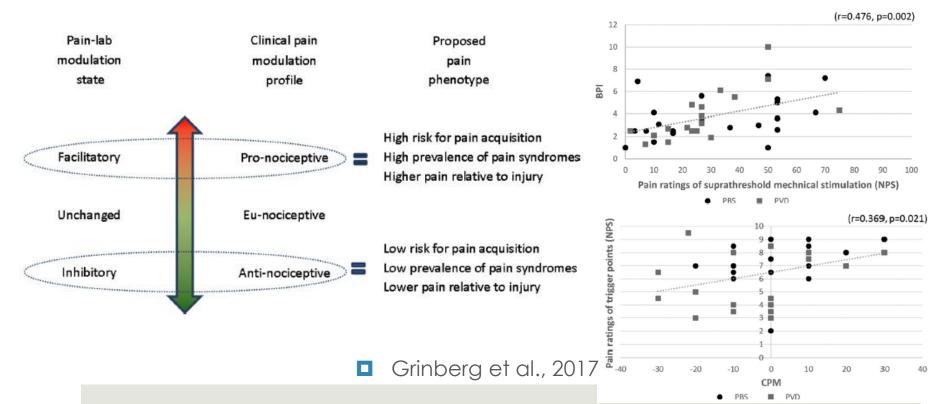

Tangent on SCD

		No Chronic Opioids Mean (SD)	Chronic Opioid Therapy		lling for ession
	Outcome		Mean (SD)	Beta	F
	Laboratory Indices				
	CS Index	-0.10 (0.4)	0.34 (0.8)**	0.33	6.0**
	QST Index	0.08 (0.5)	0.02 (0.6)	-0.09	0.4
Something special about these more	Diary Indices				
'CS' measures	Non-Crisis Pain	10.3 (14.1)	34.5 (15.7)***	0.50	21.9***
than simple	Proportion of Days in VOC	11.9% (16.4)	29.0% (26.3)**	0.30	7.3*
somatosensory amplification	Crisis Pain	41.0 (21.0)	60.6 (11.4)***	0.40	8.9**

Quantifying Amplification

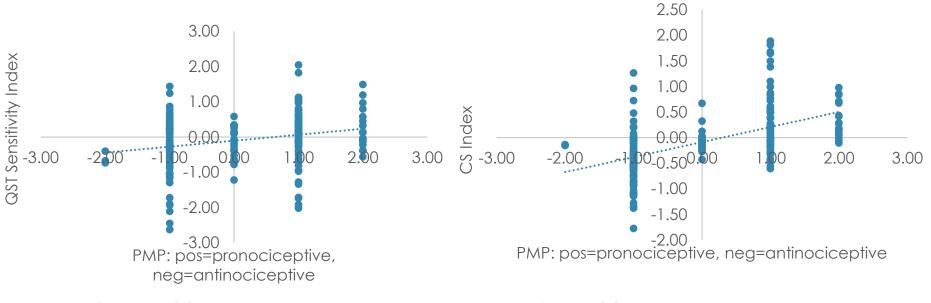
More sensitive

Less sensitive



Quantifying Amplification

Pain Modulation Profile


Pain modulation profile and pain therapy: Between pro- and antinociception

David Yarnitsky^{a,b,*}, Michal Granot^c, Yelena Granovsky^{a,b}

How do these different methods relate?

In TKR...

R=.25; p=.001

R=.54; p<.001

How are they related to WPI/SS?

			Correlations				
		bpi_severity. v1: Mean of Worst, Least, Average, and Current Pain Qs	wpi_sum.v1: WPI Sum	ss_sum.v1: Symptom Severity Sum	Nociceptive profile - pos=pronocic eptive, neg=antinocic eptive	QSTsens_ind exNocsbasic. v1	CS_TtsMtsSh sAsCMP.v1
bpi_severity.v1: Mean of	Pearson Correlation	1	.242**	.387**	.056	.187*	.080
Worst, Least, Average, and Current Pain Qs	Sig. (2-tailed)		.000	.000	.489	.016	.285
	Ν	209	209	172	155	164	179
wpi_sum.v1: WPI Sum	Pearson Correlation	.242**	1	.348**	.058	.201**	015
	Sig. (2-tailed)	.000		.000	.431	.005	.823
	Ν	209	246	197	184	197	214
ss_sum.v1: Symptom	Pearson Correlation	.387**	.348**	1	019	.181 [*]	015
Severity Sum	Sig. (2-tailed)	.000	.000		.819	.023	.844
	Ν	172	197	197	150	158	171
Nociceptive profile -	Pearson Correlation	.056	.058	019	1	.245**	.542**
pos=pronociceptive, neg=antinociceptive	Sig. (2-tailed)	.489	.431	.819		.001	.000
	Ν	155	184	150	184	180	184
QSTsens_indexNocsbasi	Pearson Correlation	.187*	.201**	.181*	.245**	1	.337**
c.v1	Sig. (2-tailed)	.016	.005	.023	.001		.000
	N	164	197	158	180	198	198
CS_TtsMtsShsAsCMP.v1	Pearson Correlation	.080	015	015	.542**	.337**	1
	Sig. (2-tailed)	.285	.823	.844	.000	.000	
	Ν	179	214	171	184	198	215

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

What about patient selection?

- Can/Should we continue to rule out those with more than 'our' dx of choice?
 - Easier to recruit, more generalizable and more meaningful to include other pain conditions
 - Likely something different about those with a more narrow pain. Select and subtype of patients included in clinical trial if exclude those with widespread or multiple locations.
 - Chronic widespread pain vs. regional differ from those with focused pain.
 - Will the FDA/funding agencies allow/accept that?

What about patient selection?

- Several reviews have summarized the utility of QST in advancing personal medicine
- Should we subgroup or classify participants?
 Forecasting analgesic benefit

Amplification associated with analgesia

Forecasting analgesic benefit:

- Lidocaine
- Lamotrigine
- Pregabalin
- Duloxetine
- Oxycodone
- Oxcarbazepine
- Placebo analgesia
- Morphine
- Mexiletine
- □ NSAIDs

Pain Medicine 2014; 15: 61–72 Wiley Periodicals, Inc.

PSYCHOLOGY, PSYCHIATRY & BRAIN NEUROSCIENCE SECTION

Review Article

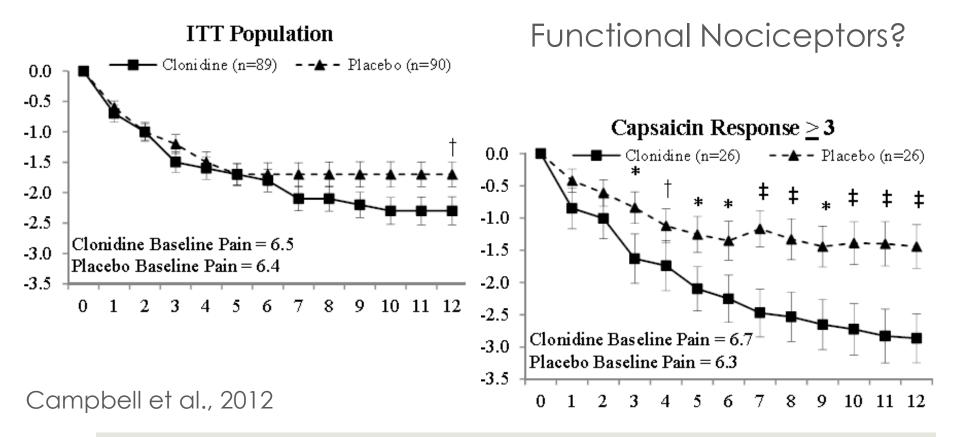
Can Quantitative Sensory Testing Move Us Closer to Mechanism-Based Pain Management?

Cruz-Almeida & Fillingim, 2014

Pain. 2016 September ; 157(9): 1851-1871. doi:10.1097/j.pain.0000000000000002.

Patient phenotyping in clinical trials of chronic pain treatments: IMMPACT recommendations Edwards et al., 2016

Can quantitative sensory testing predict responses to analgesic treatment?


K. Grosen¹, I.W.D. Fischer^{2,3}, A.E. Olesen², A.M. Drewes^{2,4}

What about patient selection?

Premature?

- Several reviews have summarized the utility of QST in advancing personal medicine
 - Forecasting analgesic benefit
 - Quantifying sensory function and its potential value in tailoring treatment
 - Multidisciplinary Pain Treatment
 - Spinal Cord Stimulation CPM/TTS predicted efficacy
 - Topical Pain Treatments

Clonidine Efficacy by Capsaicin <u>Response</u>

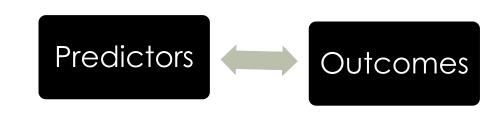
Implications?

- QST
 - Temporal Summation
 - Conditioned Pain Modulation
 - Static Tests?
- Psychological
 - Mood (anxiety/depression/affect)
 - Catastrophizing
 - Stress
 - Fatigue

Behavioral

Sleep

Diet?


Exercise?

Smoking?

- Trauma history
- Kinesiophobia
- Fear of pain
- Social
 - Support?
 - Solicitousness?
 - Work
 - SES
 - Demographic
 - HCU

Physical

- Pain Severity
- # Painful Sites (pain at each?)
- QST
- Widespread 'fibromyalgianess'
- Disability
- Function!

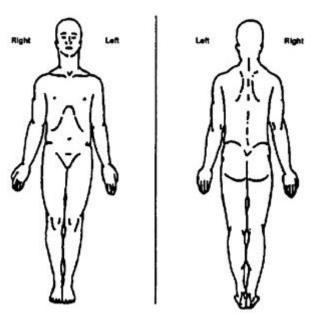
What outcomes?

BPI

What is being rated?

One ring to rule them all?

- 3. Please rate your pain by marking the box beside the number that best describes your pain at its worst in the last 24 hours. $\Box 0$ $\Box 1$ $\square 2$ $\square 6$ 8 $\square 4$ $\Box 7$ $\square 9$ 10 No Pain As Bad As Pain You Can Imagine
- 4. Please rate your pain by marking the box beside the number that best describes your pain at its <u>least</u> in the last 24 hours.


0	1	2	3	4	5	7	8 🗌	9	10
No Pain									Pain As Bad As You Can Imagine

5. Please rate your pain by marking the box beside the number that best describes your pain on the <u>average.</u>

0	1	2	3	4	5	6	7	8	9	10
No Pain										Pain As Bad As You Can Imagine

6. Please rate your pain by marking the box beside the number that tells how much pain you have <u>right</u>

now.										
0 No	□1	2	3	4	5 🗌	6	7 []	8 []	9	10 Pain As Bad As
Pain										You Can Imagine

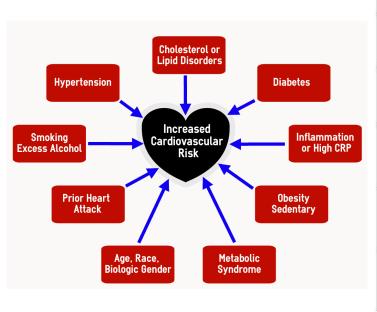
How would we put it all together if asked these for EVERY marked site?

What outcomes?

Focus on function (thriving/functional/bedridden)

- Functional capacity evaluation in the laboratory?
- Wear a pedometer for x time? *
- Use a disease specific measure of function?

Turk et al., 2016


Psych outcomes/behavior?

Constellation of vulnerability

- If CS/SSA is a continuum, how do we measure/define/describe that?
- Does the distribution of those factors matter?
- Is there a meaningful way to put it all together and measure movement on factors?

Constellation of vulnerability

Take a note from the cardiovascular literature?

Blood pressure (mmHg)										
Other risk factors, OD or disease		Normal SBP 120-129 or DBP 80-84	High normal SBP 130-139 or DBP 85-89	Grade 1 HT SBP 140-159 or DBP 90-99	Grade 2 HT SBP 160-179 or DBP 100-109	Grade 3 HT SBP ≥180 or DBP ≥110				
No other	Risk level	Average risk.	Average risk	Low added risk	Moderate added risk	High added risk				
risk factor	Follow up visits /year			2	2	3.5				
1-2 risk	Risk level	Low added risk	Low added risk	Moderate added risk	Moderate added risk	Very high added risk				
factors	Follow up visits /year	3.5	3.5	2	2	3.5				
3 or more risk factors,	Risk level	Moderate added risk	High added risk	High added risk	High added risk	Very high added risk				
MS, OD or Diabetes	Follow up visits /year	3.5	3.5	3.5	3.5	3.5				
Established CV or renal disease	Risk level	Very high added risk	Very high added risk	Very high added risk	Very high added risk	Very high added risk				
	Follow up visits /year	8.5	3.5	3.5	3.5	3.5				

Is there a way to put it all together?

	Baseline Factors									
Clinical Pain	Function	on Lab SSA SPACE Markers								
Pain Sites and Severity	Impact: Q's, wearables, function testing	Biomarkers (inflammat ion/tender point counts)/CS (TS, CPM, AS)	GS (questionn aire(s), static QST	Behavioral Factors (smoking, sleep, vigor)	Psychologi cal Factors (cat, depression, anxiety	Cognitive issues				
Head Foot										
Joints Jaw										
Back Knee										

Is there a way to put it all together?

	Active									
Clinical Pain	Function	Lab Markers	SSA		SPACE					
Pain Sites and Severity	Impact: Q's, wearables, function testing	Biomarkers (inflammatio n/tenderpoin t counts)/CS (TS, CPM, AS)	GS (questionnair e(s), static QST	Behavioral Factors (smoking, sleep, vigor)	Psychological Factors (cat, depression, anxiety	Cognitive issues				
Head										
Foot										
Joints										
Jaw Back										
Knee										

Placebo						
Clinical Pain	Function	Lab Markers	SSA	SPACE		
Pain Sites and Severity	Impact: Q's, wearables, function testing	Biomarkers (inflammatio n/tenderpoin t counts)/CS (TS, CPM, AS)	GS (questionnair e(s), static QST	Behavioral Factors (smoking, sleep, vigor)	Psychological Factors (cat, depression, anxiety	Cognitive issues
Head						
Foot						
Joints						
Jaw						
Back						
Knee						

Summary

Subgrouping patients?

- Treat them differently?
- What predictors/what outcomes?
 - Both CS/GS measures?
- Should we recommend using QST?
 - Which tasks?
 - How should we present those data?
 - Should it be reduced?
- Is there a better way to show the variables impacted by treatment?

Acknowledgments

Mentors/Collaborators

- Jennifer Haythornthwaite, Ph.D.
- Robert Edwards, Ph.D.
- Roger Fillingim, Ph.D.
- Srinivasa Raja, M.D.
- □ Jim Campbell, M.D.
- Luis Buenaver, Ph.D.
- Allan Belzberg, M.D.
- Michael Caterina, M.D., Ph.D.
- Michael Smith, Ph.D.

- Research Assistants
 - Alex Kearsen
 - Jim Stone
 - Brook Fulton
 - Deborah Fashole-Luke
 - Katie Smith
 - Katie Dunnock
 - Jenna Pelly
- Funding Sources
 - NINDS
 - NHLBI
 - NIDA

 - Blaustein Pain Foundation
 - APS
 - Neurosurgery Pain Research Institute

Thank you