Implications of central sensitization and "centralized chronic pain" for the design of chronic pain clinical trials

Srinivasa N. Raja, M.D. Division of Pain Medicine Professor of Anesthesiology and Neurology

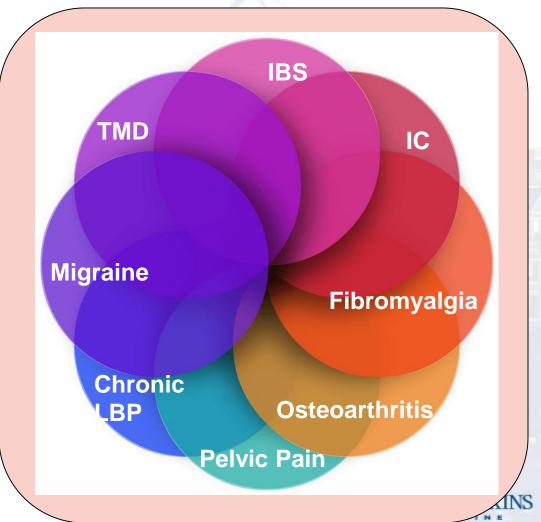
JOHNS HOPKINS

"What's in a name?" Beg to differ with Shakespeare

- Central Sensitivity Syndrome
- Centralized Chronic Pain
- Overlapping Chronic Pain Conditions
- Chronic Overlying Pain Conditions
- Chronic Widespread Pain
- Chronic Primary Pain
- Fibromyalgia-ness
- Chronic Fatigue Syndrome / Systemic Exertional Intolerance Disease
- Nociplastic Pain
- Somatoform Disorders (DSM-4), Somatic Symptoms & Related disorders (DSM-5)

What have we been discussing?

- Condition: An abnormal state of health that interferes with the usual activities or feeling of wellbeing.
- **Disease:** Resulting from a pathophysiological response to external or internal factors.
- **Disorder**: A disruption to the normal or regular functions in the body or a part of the body.
- **Syndrome:** A collection or set of signs and symptoms that characterize or suggest a particular disease.



CS, Centralized Pain & Overlapping Pain Conditions

ιςπίοη

Most highly prevalent pain conditions (2-3 x more prevalent in women vs men)

- Fibromyalgia
- Arthritis- Rheumatoid, Osteo
- Migraine headache
- Irritable bowel syndrome
- Interstitial cystitis
- Temporomandibular disorders
- Chronic pelvic pain

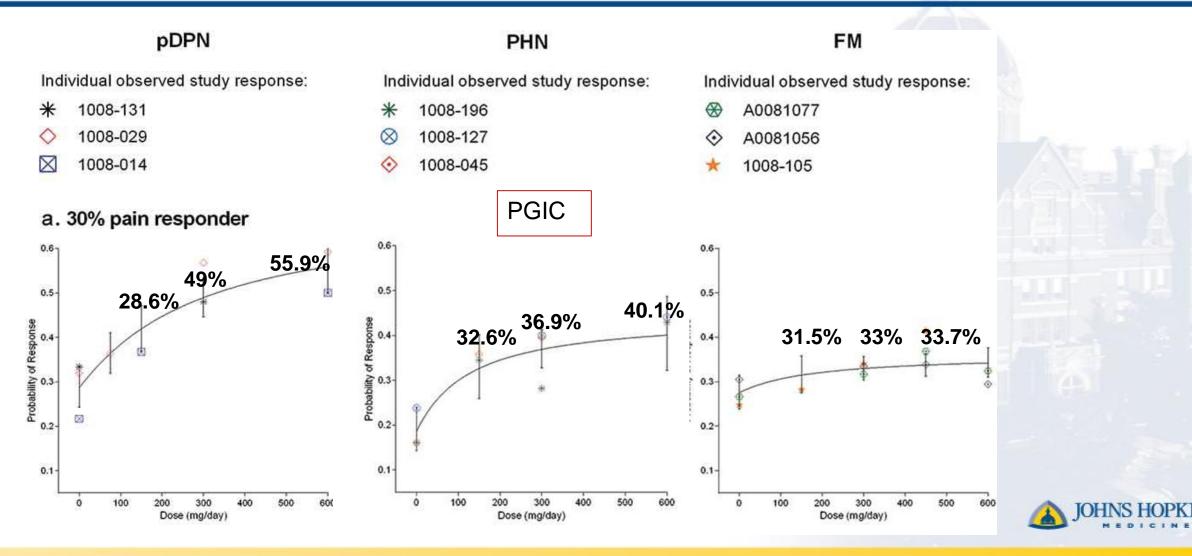
IMMPACT XXIII

Why do we need IMMPACT-XXIII ? Do we need a different study design for CSS / COPC?

Research Design Considerations for Chronic Pain Clinical Trials Addressing Central Sensitization/ Somatosensory Amplification and Multiple Comorbidities

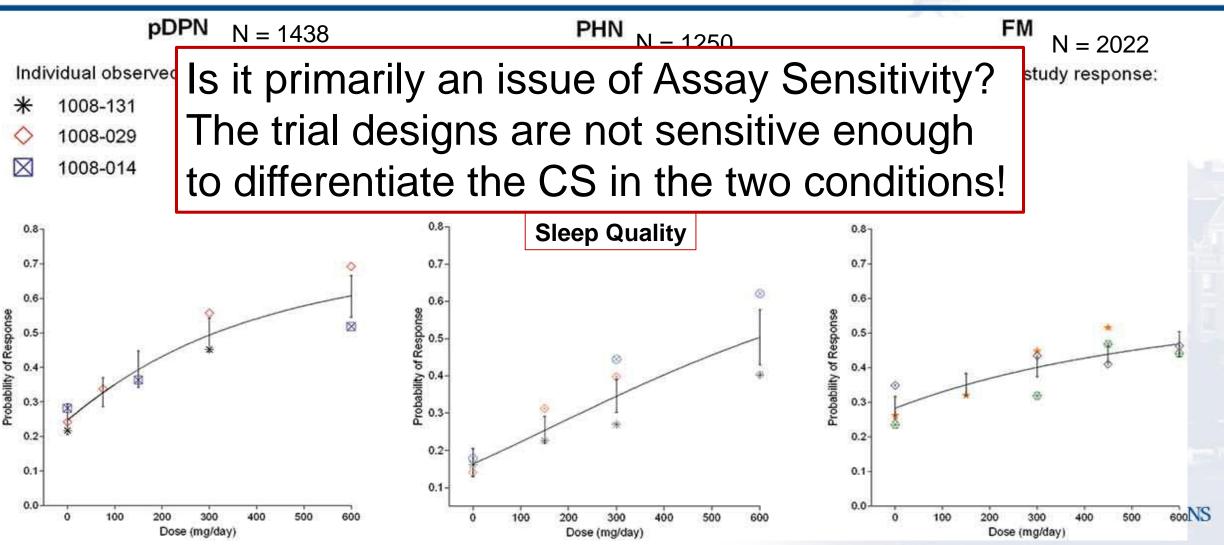
- Hypothesis: CSS /COPC have a common central mechanism that is different from other acute or chronic pain conditions, e.g., inflammatory or neuropathic pain (PHN, phantom pain)
 - Twin studies-modest genetic influence for CWP, COPS (Kato 2006, Schur 2007)
- Inference: Treatments effective in CSS may be unique & different from other chronic pain conditions and hence research design should be appropriate to identify these therapies

Kato K et al. Arthritis Rheum 2006;54:1682, Schur EA ...J Gen Intern Med 2007;22:818

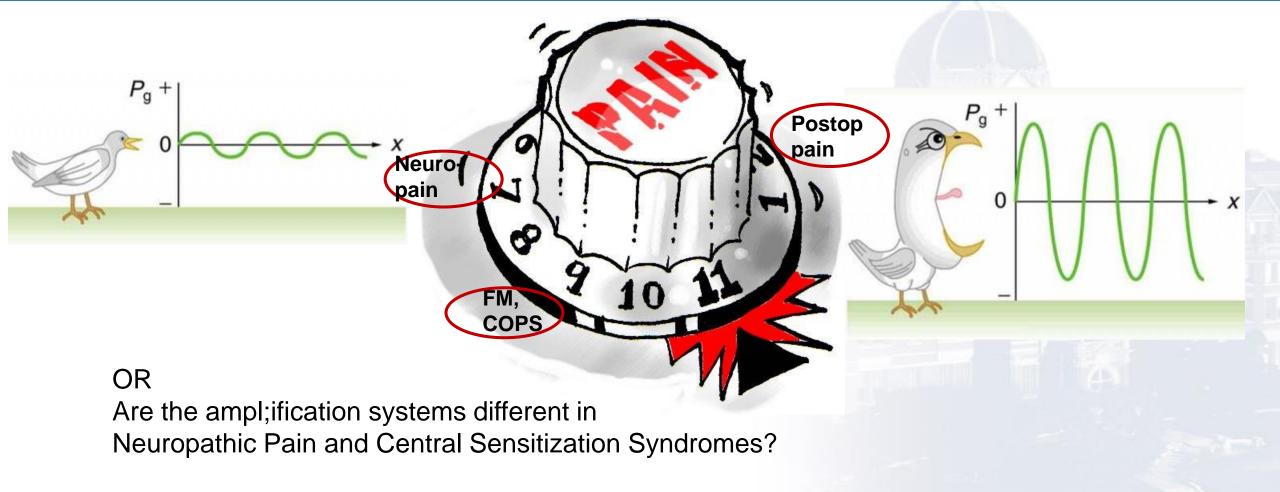

Is Central Sensitization in CSS different from that in Neuropathic Pain? Poster Child- Fibromyalgia (FM)

- FDA approved drugs:
 - Duloxetine- approved for FM, DPNP, chronic M-S pain
 - Pregabalin- approved for FM, NP associated with DPN, PHN, spinal cord injury pain
 - Milnacipran- approved for FM (preclinical studies in NP +)
- Other treatments: ketamine infusion (+ 60% of FM, NP +)
 - CBT- fibromyalgia, NP, OA
- Drugs not effective in NP also not useful in FM
 - NSAIDs: "NSAIDs cannot be regarded as useful for treating fibromyalgia." Cochrane Aug 31, 2016

Littlejohn G, Guymer E. Biomedicines. 2017; 5(2): 15

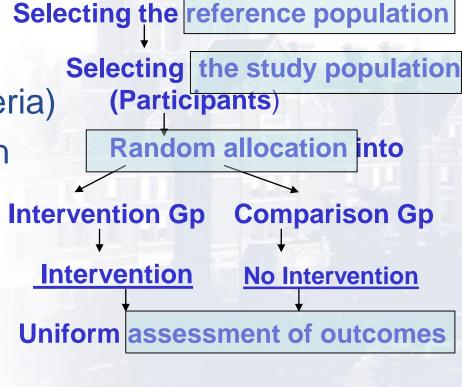

Pregabalin in FM vs NP Is the effect similar?

Arnold LM et al Postgrad Med 2017;129:921



Pregabalin in FM vs NP Is the effect similar?

Arnold LM et al Postgrad Med 2017;129:921


Difference between central amplification in NP & CSS: Magnitude and extent / anatomical sites?

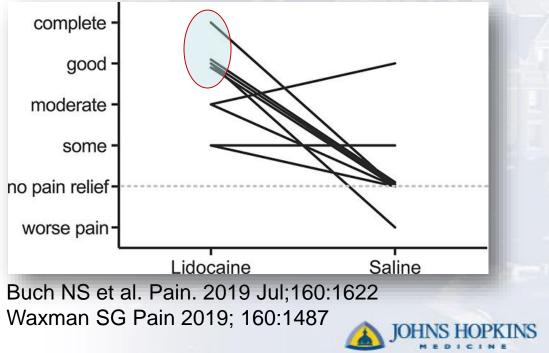
Planning the Optimal Study: 101 From disease concept to execution of Trials

- Defining the population of interest (reference population)
- Objectives- What is the primary question?
- Design of the Study
 - Study population (Inclusion / Exclusion criteria)
 - Eligibility assessment & Baseline evaluation
 - Allocation- randomization method
- Outcome measures
 - Primary and Secondary
 - Biomarkers and Surrogate Response

What is the *Reference Population* for CS and Centralized Pain?

- Patients with central sensitization / somatosensory amplification [*enhanced S-R function*] regardless of clinical presentation (muscular, visceral, joint pains) AND /OR
- 'Centralized Pain' [independent of peripheral afferent drive- autonomous CS]
 - Subset of patients with FM- peripheral input from muscle may play an important role (Staud R, 2009)

Staud R et al. Pain 2009;145:96-104 Buch NS et al. Pain. 2019 Jul;160(7):1622-1633.


11

Not all patients with Central Sensitization have "Centralized" Pain: Role of peripheral inputs

I.M. Lidocaine injections increased local pain-thresholds and decreased remote secondary heat hyperalgesia in FM

Phantom pain intensity significantly reduced after peripheral nerve block with lidocaine vs saline \rightarrow Afferent input from the PNS plays an important role

Reference Population of Interest Lumpers vs Splitters

FENCE - STRADDLER

Splitters focus on Differences

 Patients with 'centralized pain' differ in their drug response compared to those where peripheral drive maintains CS

SPLITTER

 FM phenotypes (top-down/ bottom-up) differ in Rx response Lumpers look for Similarities

- CSS/COPC share a common pathophysiology/ mechanism
- Similar drug efficacy in different CS conditions

Adapted from V. A. McKusick,

LUMPER

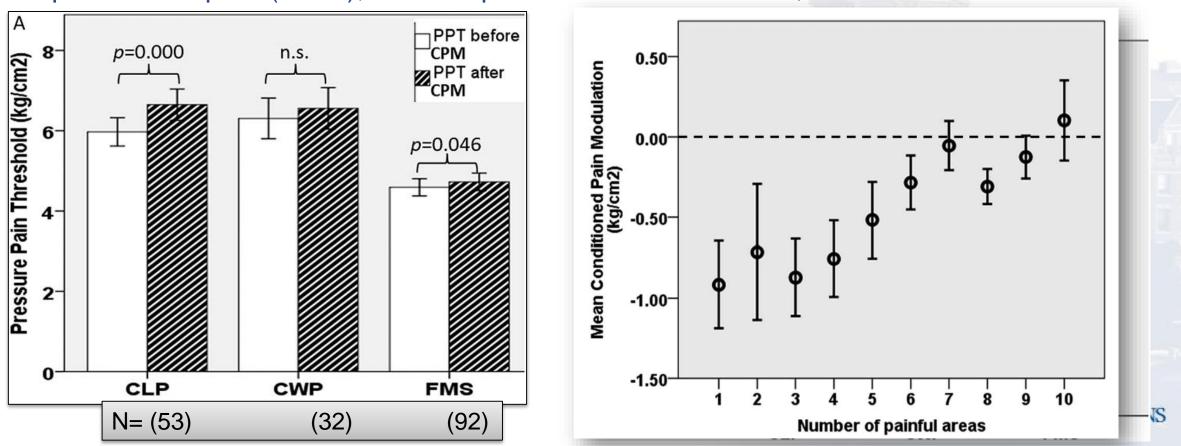
Study Population: The gold standard diagnostic criteria for 'CS' and centralized pain state ?

Clinical Features

- Widespread pain
- Multi-sensory hypersensitivity
- Fatigue
- affective lability, $\Delta \mod$
- Sleep disturbance
- Cognitive problems

How many of these features? Sensitivity & Specificity ?

Mechanistic / Neurobiologic Correlates


- Increased gain of SS system (QST)
 - Allodynia
 - Hyperalgesia- Mechanical / Thermal
 - Temporal summation / windup
 - Aftersensations
 - Reflex nociceptive threshold
- Objective Biomarkers
 - Neuroimaging: altered brain-network
 connectivity
 14

Widespread pain: Dysfunction of Descending Modulation? CPM in Low back pain and FM

Gerhardt A et al. Pain 2017;158: 430-439

Chronic local back pain (CLP), chronic widespread back pain (CWP), and FM pts.

Association of higher spatial pain extent with lower CPM; CLP but not in FM

Rapid Screening Tools for Fibromyalgia (PROs) Are these tools useful for other CSS?

- FibroDetect (Baron R. Health Qual Life Outcomes 2014;12:128)
- Fibromyalgia Diagnostic
 Screen (Arnold LM J Womens Health 2012;21:231)
- Fibromyalgia Rapid Screen Tool (Fan A Rheumatology 2016)

14 questions \rightarrow 7 scored in Final model

• $\geq 6 = AUC \text{ of } 0.74$, sensitivity 77%, specificity 61%

Table 3 Final discriminant model based on modified FibroDetect items

Question		Response choices	Coding
1	At least one body part of upper body ticked (head, neck, shoulders)	Yes	1
		No	0
	At least one body part of upper limb ticked (right and left arms)	Yes	1
		No	0
	At least one body part of lower limb ticked (right and left legs)	Yes	1
		No	0
2	Frequency of the pain	Every day or Almost every day	1
		Some days	0
3	At least 3 kinds of pain ticked [*]	Yes	1
		No	0
4	Frequency of tiredness	Every day	1
		Some days or Never	0
5	Impact of physical effort on tiredness	Much more tired	1
		Slightly more tired or No difference	0
6	At least 7 symptoms ticked ^{**}	Yes	1
		No	0
13	Extent to which patients recognize themselves in the questions being asked	Absolutely	1
		A little or Not at all	0
	16	i 🔥 J	OIII

Fibromyalgia Rapid Screening Tool (FiRST)

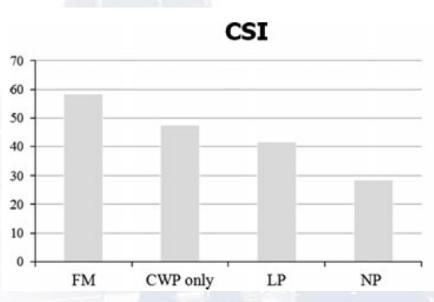
Fan A. et al. Rheumatology (Oxford). 2016;55:1746 Perrot S et al. Pain 12010;50:250

- A self-administered questionnaire developed by French researchers, consists of six questions regarding the presence or absence of the various dimensions of fibromyalgia:
- "Yes" or "No" answer, with each "yes" = 1 point. A score of 5 or more has the highest sensitivity and specificity for fibromyalgia

SensitivitySpecificityFiRST vs ACR9075%80%FiRST vs Rheumatologist76%85%NPV is excellent (97%), whereas the PPV is poor (27%)

Kappa coefficien 1 – Diffuse pain 0.77			
2 – Fatigue	0.80		
3 – Pain descripto	ors 0.84		
4 – Abnormal sen	sations 0.80		
5 – Associated so comorbidities	matic 0.78		
6 – Sleep and cog	gnition 0.82		
Are these tools too specific for FM and not generic enough to screen for CS and COPC?			

Study Population: Screening for Central Sensitization (Diagnostic Criteria- Scales)


- Clinical: widespread 'unpleasant sensory experiences disproportionate to any observable peripheral cause'
- Pain Sensitivity Questionnaire (Ruscheweyh 2009)
- Central Sensitization Inventory (Mayer 2012, Neblett 2013) → CS
- Sensory Hypersensitivity Scale (Dixon 2016) → SS Amplification
- Centralized Pain Index (CPI, 'under-construction', Clauw D AR070600)

Williams DA *J Appl Behav Res* 2018;23:e12135; Ruscheweyh R, *Pain* 2009; 146:69 Mayer TG *Pain Pract* 2012;12:276-285; Neblett R, *J Pain* 2013; 14:438-445 Dixon EA et al. J Behavioral Med. 2016; 39:537–550

Central Sensitization Inventory

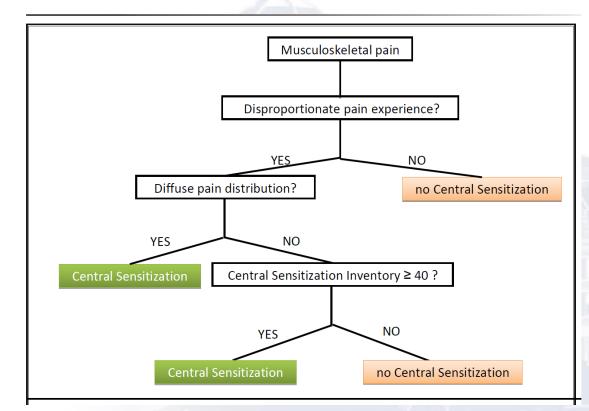
- Identifies key symptoms associated with CSSs and quantifies the degree of these symptoms
- 25 statements related to current health
 symptoms, each item measured on a 5-point
 (0-4) Likert scale, test-retest correlation = 0.817)
- 4 Factors (53.4% of the variance): 1. Physical Symptoms, 2. Emotional Distress, 3. Headache /Jaw Symptoms, 4. Urological Symptoms (5.2%)
- Validated in FM, CWP, CLBP, and normal subjects

Mayer et al. Pain Practice 2012; 12:276-85

Sensory Hypersensitivity Scale (SHS)

- 25-item measure of general & modality-specific hypersensitivity
- Useful uni-factorial measure of sensory hypersensitivity
- Modest association with 3 QST measures (heat threshold & tolerance, cold tolerance)
- FM subjects scored higher than LBP, OA, or controls
- SHS scores correlated with symptoms of depression and anxiety

Dixon EA et al. J Behavioral Med. 2016; 39:537–550

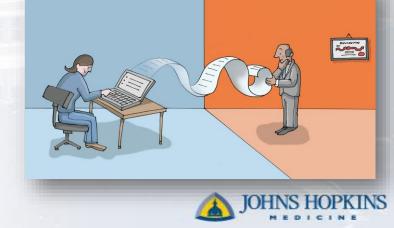

Criteria for Clinical Classification of Central Sensitization Pain- panel recommendation

Steps (1-3 or 1,2, 4 = CS+)

- 1. Rule out Neuropathic Pain
- 2. Rule out Nociceptive Pain
- 3. At least one of the following criteria:

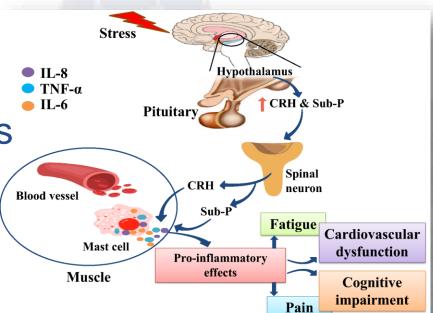
1) Pain experience disproportionate to the nature and extent of injury or pathology 2) Diffuse pain distribution, allodynia, and hyperalgesia

4. General hypersensitivity to sensory stimuli- pressure, cold, heat, odor, light, sounds (CSI >40)



Nijs J et al. Pain Physician 2014; 17:447-57 Williams DA J Appl Behav Res 2018;23:e12135

Pros and Cons of Self-assessment Tools

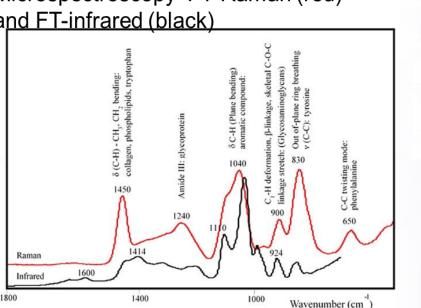

- Practical, easy to administer
- Have been validated for FM/CS clinical syndromes
- Good internal validity, conceptually strong
- Have not been tested carefully for correlation with objective measures/ biomarkers of CS (e.g., TS, CPM, neuroimaging)
- Too specific, not generic for COPC

Potential Objective Tests and Biomarkers for Central Sensitization

- QST: Enhanced TS, Decreased CPM
- Imaging: increased activation of pain-related networks
- Increase in pain-facilitating neuro-transmitters (NPY, CRH, subP, BDNF) and inflammatory cytokines (IL-6,8, IL-1β, TNF-α, CSF-fractalkine)?
- Decreased production of pain-inhibiting transmitters (5-HT, dopamine, NE, β–endorphins)?

Sensitivity and Specificity as a Diagnostic Tool in a given patient ?

Singh L et al. J Neurochem Res 2019;44:1517


Biomarkers: Metabolomics- "chemical fingerprint" Vibrational (mid-IR and Raman spectroscopy)

Incident ligh

- No sample preparation, non-contact & non-destructive
- Dried blood-spot from finger stick

Microspectroscopy-FT-Raman (red) and FT-infrared (black)

Hackshaw KV et al. J Biol Chem. 2019;15;294:2555

Scattered ligh

Rayleigh scatter (same wavelength, more abundant)

aman scatter (different wavelength, less abundant)

Sir CV Raman Nobel-Physics 1930

Metabolic fingerprinting for diagnosis of FM

Discrimination Power Statistic SIMCA Class Projection FM vs RA 1430 PC2 FM vs SLE SLE Discriminating Power 1515 200 1643 100 PC1 0 1768 1582 1396 1209 Wavenumber (cm¹)

Cluster Patterns: Soft-independent modeling of class analogy (SIMCA) model performance comparing predictions to true categories

Hackshaw KV et al. J Biol Chem2019 Feb 15;294:2555-2568.

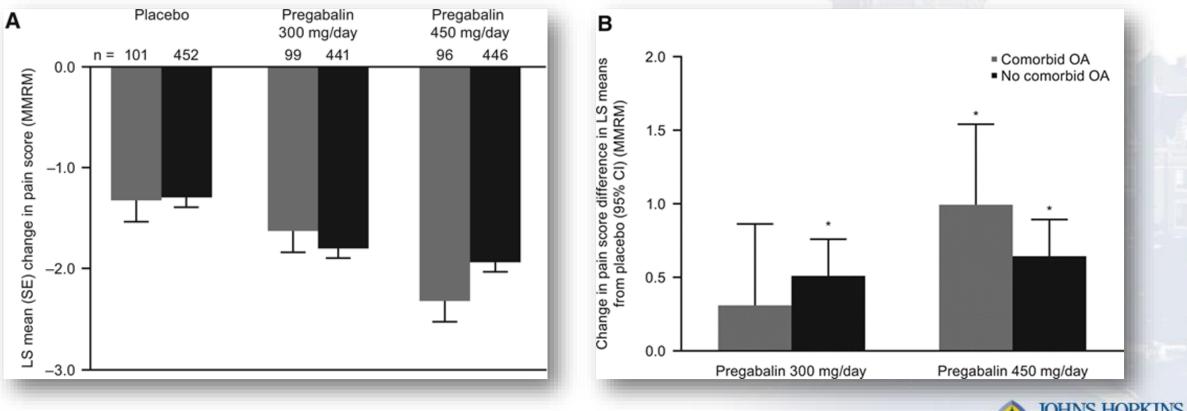
To Include or Not to Include Patients with multiple Comorbidities?

- Widespread pain
 - Allodynia, hyperalgesia
- Muscle, joint, visceral pains
- *Multi-sensory hypersensitivity*
- Fatigue
- Affective lability, ∆ mood
- Sleep disturbance
- Cognitive problems

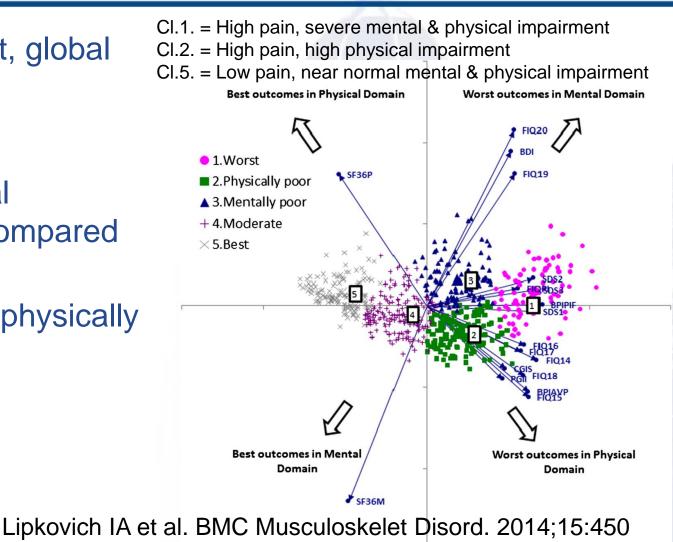
PRO (lumper)

- Common shared mechanism?
- A consequence of widespread pain?
 - Pain relief will result in improvement in other features

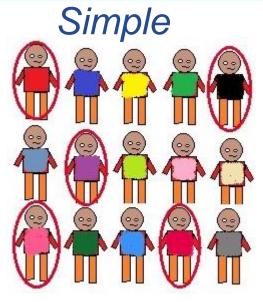
CON (splitter)


• May confound results and interpretation may be difficult

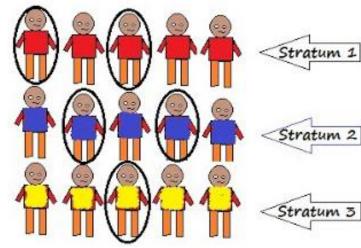
Does Comorbidity influence drug effects? Pregabalin in FM patients with or without OA


Pregabalin equally effective in FM patients with or without OA

Argoff CE Pain Med 2016; 17:2100


FM patients- a heterogeneous population Subgroups- Cluster Analysis of Duloxetine study patients

- Pain, mental & physical impairment, global impression, overall functioning
- 1276 pts. (1188 F; 724 D: 464 Pl.)
- Mental impairment most detrimental comorbidity influencing outcome, compared to physical impairment
- Better treatment effect observed in physically impaired group


Randomization Sampling Methods

Reference population Study population Random allocation

* Total sample size
split into equal groups
* Each pt. randomly
assigned to one of
the groups

Stratified

- * Population divided into subgroups
- Randomization and sampling occurs within each subgroup

* Population divided into many subgroups
* Random choice of subgroups

Cluster 3

Cluster

Proportionate Stratified Random Sampling

Pros

- Stratified random sampling accurately reflects/represents the population being studied
- Greater precision, requires a smaller sample, saves money
- Allows subgroup analysis

What are the relevant Strata?

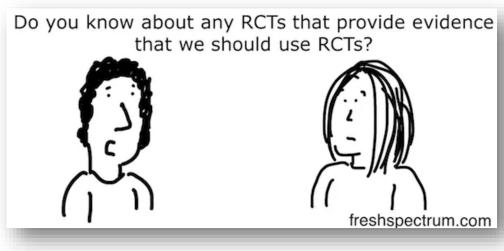
- Single Primary vs Multiple Pain conditions
- "Centralized Pain" vs peripheral + central CS
- Comorbidities: Severity of Physical vs Mental/Psychological features
- Appropriately powered to determine differences across strata

Cons

- Defining the strata is critical. Requires confidently classifying every member of the population into a subgroup
- More complex to organize and analyze the results compared to simple random sampling

30

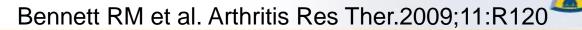
What is the primary clinical question? Testing a new drug for CSS


- Q1. Is drug A effective in patients with CSS, regardless of the primary pain presentation?
- Q2. Does drug B help understand the neurobiology of CSS (CS mechanism different from NP)?
- A. Enroll all patients with CSS (regardless of primary pain) and study the efficacy of drug at multiple pain sites
- B. Enroll all patients with central sensitization pain, but stratify based on solitary vs multiple pains and compare with patients with NP

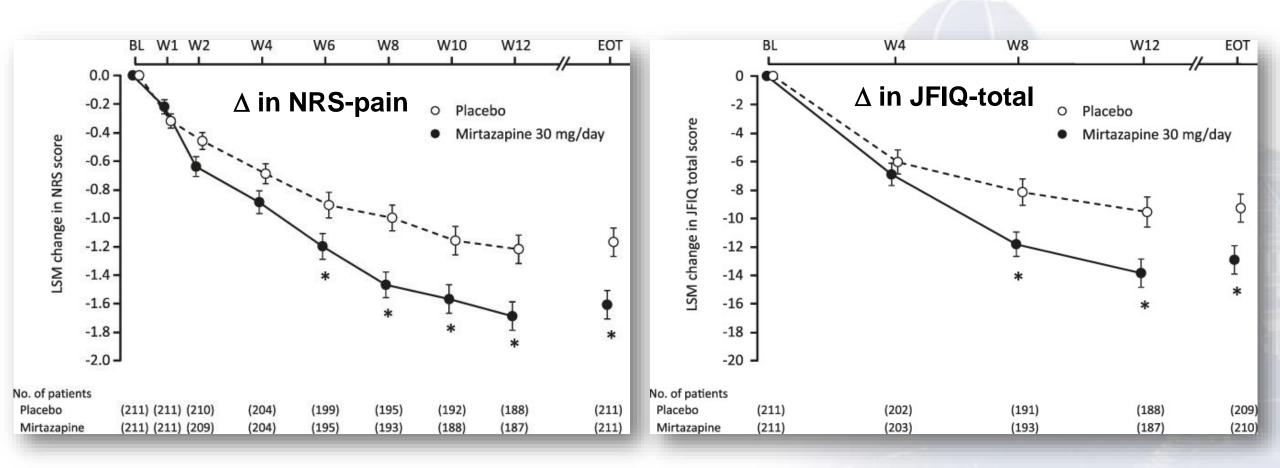
RCTs and clinical decision making! Efficacy vs Effectiveness in the population

Vs Vs


- "Carefully conducted observations studies may provide more evidence than poor RCTs." 1 (Guyatt, G. 2008)
 - Multi-center data from large Registries ?
- "Unfortunately, a perfect trial can only exist in our imagination." ² (Jadad A. 2007)


Outcome Measures

- IMMPACT-II Core Outcome Measures
 - Pain; Physical functioning; Emotional functioning; PGIC; Symptoms and adverse events; Participant disposition
- Fibromyalgia Impact Questionnaire revised (FIQR):
- Symptom Clusters
- QST measures: TS, CPM
- Imaging
- Other Biomarkers ?

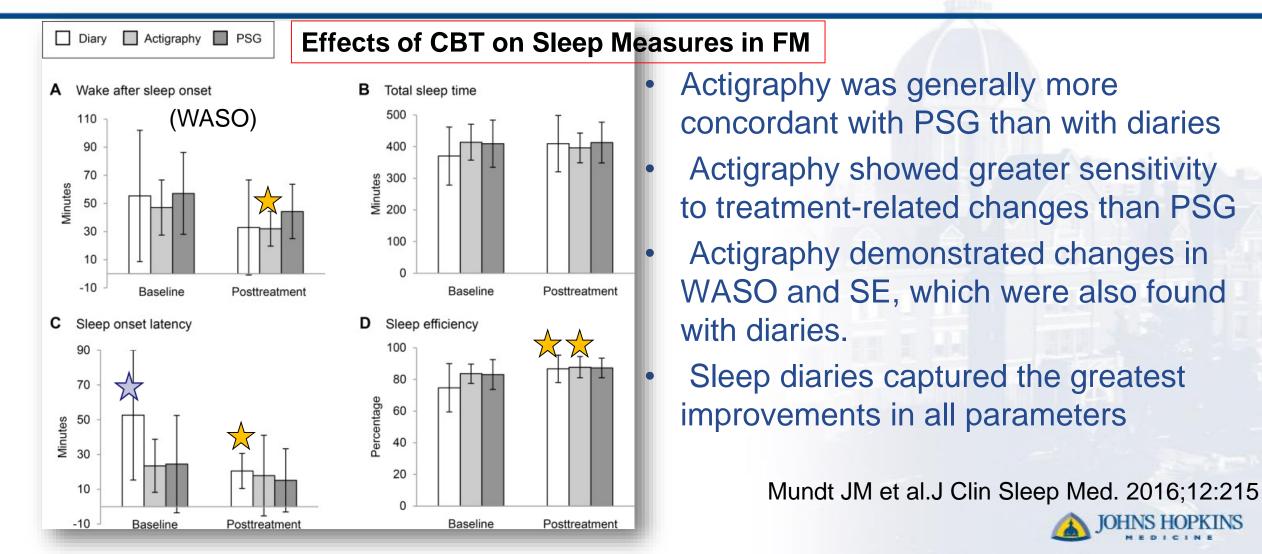


Revised Fibromyalgia Impact Questionnaire (FIQR): Validation and Psychometric properties

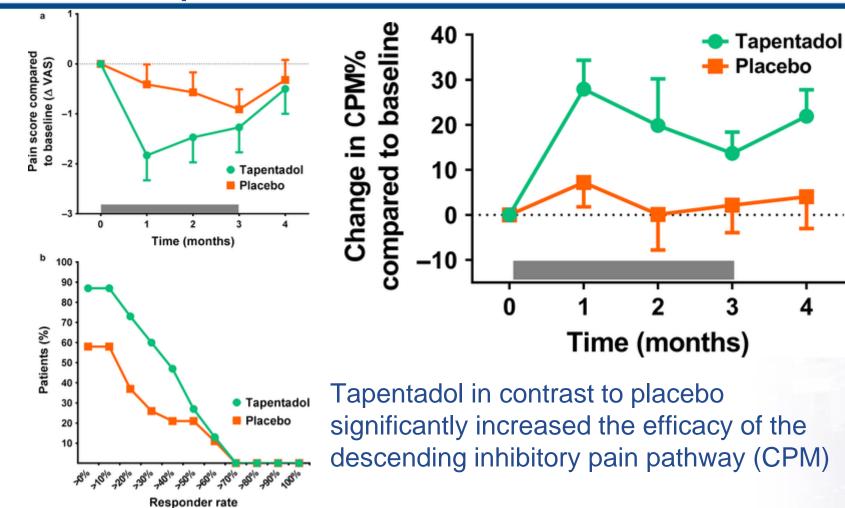
- 21 items across the 3 domains of Function (n = 9),
 Overall Impact (n = 2), and Symptoms (n = 10)
- Pt completion time:1.3 min; Scoring time: 1 min
- FIQ total score from 0 to <39 was found to represent a mild effect, >or= 39 to <59 a moderate effect, and >or=59 to 100 a severe effect
- Minimal clinically important differences in the FIQ total score was 14%

Mirtazapine on FM in Japanese subjects: Pain and FIQ changes (Japanese version)

Miki K et al. Pain. 2016; 157:2089–2096.


Symptom Clusters Are these features unique to CSS?

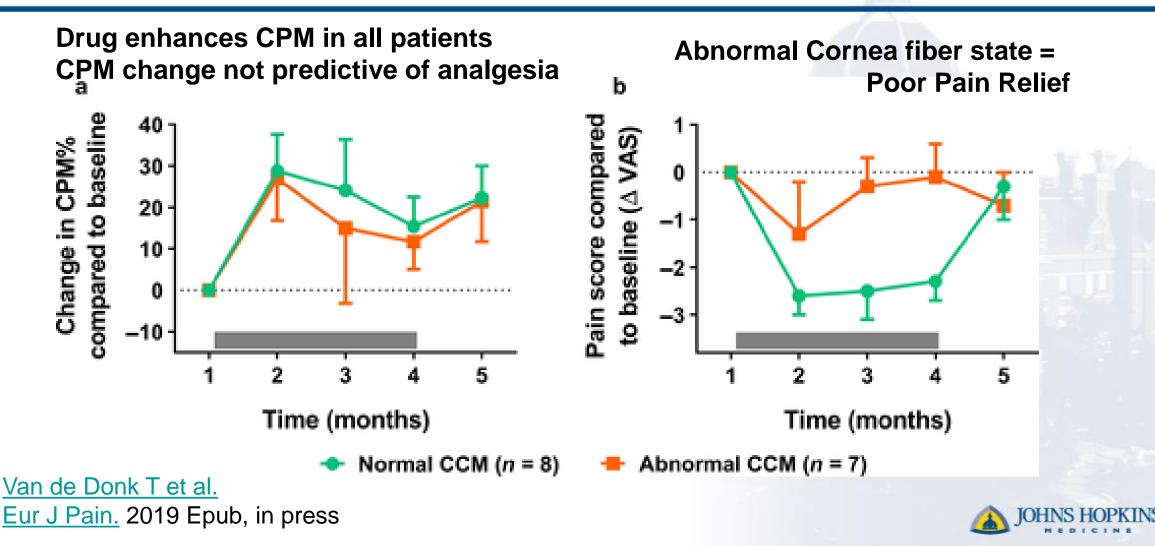
- SPADE: Sleep disturbance, Pain, Anxiety, Depression, low Energy/fatigue (Davis 2016- musculoskeletal pain)
- PSF: Oncology patients (Dodd 2001)
- SPACE: Sleep disturbance, Pain, Affective perturbation, Cognitive disturbance, Energy deficit
- Worth considering, but need additional validation


Davis LL et al. Clin J Pain 2016;32:388 Williams DA J Appl Behav Res 2018;23:e12135

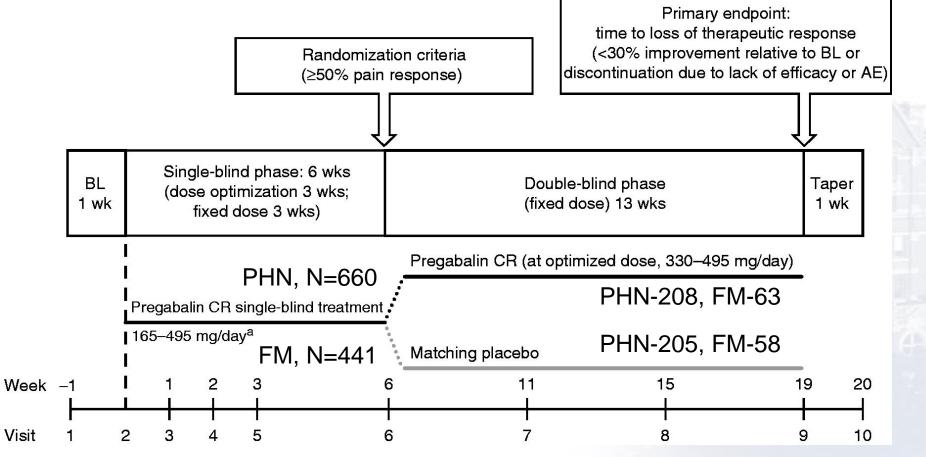
Measuring Sleep in FM: Diaries vs Objective measures (Actigraphy, Polysomnography (PSG))

Effects of Tapentadol on CPM in FM Tapentadol increased CPM efficacy

Cornea confocal microscopy Quantification of Cornea: Nerve fibre length (CNFL) Nerve fibre density(CNFD) Nerve branching density (CNBD)


2/3 parameters abnormal = Abnormal fiber state

<u>Van de Donk T et al.</u> <u>Eur J Pain.</u> 2019 Jun 4. Epub, in press

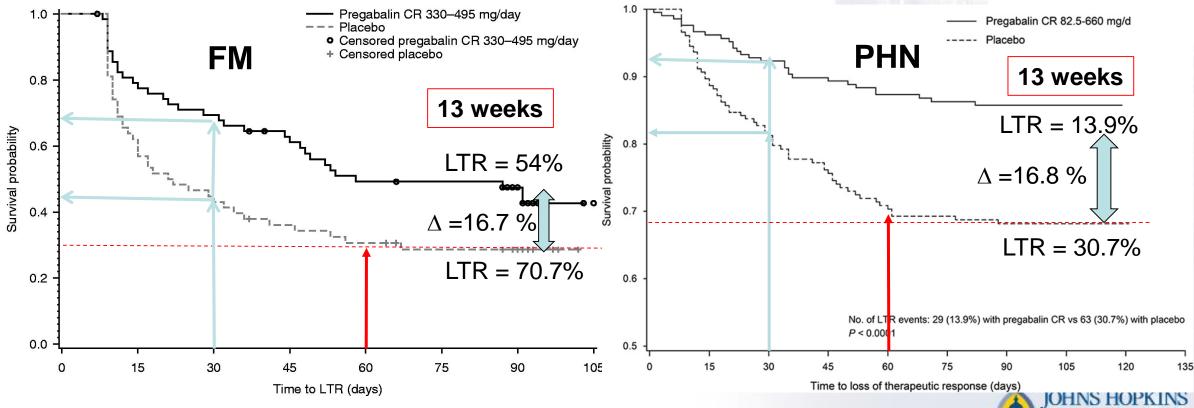


Effects of Tapentadol in FM:

Corneal confocal microscopy state predicts drug response

Phase III study of controlled release pregabalin for PHN and FM- Randomized withdrawal RCT

Huffman CL.. CI J Pain 2017;33:569; Arnold LM et al. Curr Med Res Opin. 2014;30:2069


CR-Pregabalin for PHN and FM

D-B, randomized withdrawal, placebo-controlled

Median time to Loss of Therapeutic Response (LTR)- Kaplan–Meier analysis)

LTR= <30% pain reduction relative to single-blind baseline or discontinuation owing to

lack of efficacy or adverse event (AE)

SUMMARY:

Study Design Considerations in CSS

- Consensus on name and diagnostic criteria
- Defining the Study population: Self-assessment tools, CSI &SHI Objective measures of CS; Spectroscopic fingerprints ?
- Lumping vs Splitting: What is the study question of interest? Neurobiology vs treatment efficacy in a heterogeneous population- Efficacy vs Effectiveness
- Study Design & Stratification for better understanding of shared mechanism and drug effectiveness across CS, COPS
- Outcome measures: Additional to IMMPACT-II; FIQR, Challenges and confounding effects of comorbidity