Adaptive Clinical Trials: Application to Pain Studies

IMMPACT-VIII. Arlington, VA June 13-14, 2008

Cyrus R. Mehta, Ph.D Cytel Inc., Cambridge, MA

email: mehta@cytel.com - web: www.cytel.com - tel: 617-661-2011

Statistical Challenges of Adaptive Design

- The interest in adaptive trial design has rapidly increased, much of it driven by senior management at pharmaceutical and biotech companies
- This has opened up opportunities for statisticians to work on new types of statistical, logistical, operational problems
- Some of the statistical problems include:
 - Dose response modeling using Bayesian methods
 - Unblinded sample size re-estimation
 - Dropping arms in multi-arm trials
 - Population enrichment

Non-Statistical Challenges

- Logistical and operational challenges include:
 - Managing drug supply
 - Dynamic randomization
 - Preventing bias from premature disclosure of interim results
 - Making complex decisions affecting a company's business interests without company participation
- See PhRMA Adaptive Working Group White Paper, Drug Information Journal 40, 421-423.

Two Case Studies of Adaptive Design Involving Pain Trials

- **Case 1: Acute Setting.** Combined POC and dose-response modeling of a medical compound for relief from acute dental pain in an exploratory phase 2 setting (8 hour endpoint)
- **Case 2: Chronic Setting.** Sample size re-estimation in a confirmatory phase 3 trial of a medical device for relief from chronic pain (12 week endpoint)

Acknowledgements

- Case 1 is a joint project with Nitin Patel at Cytel Inc., and Jim Bologenese at Merck Pharmaceuticals
- Case 2 is joint project with Stuart Pocock at London School of Hygiene and Tropical Medicine and a small medical device company
- I thank Drs. Patel, Bologenese and Pocock for their permission to use these cases

Case 1: Bayesian Dose-Response Modeling

- Model dose-response for an analgesic for dental pain after surgical removal of molars
- Pain relief measured serially over 8 hours after single dose
 0 = none, 1 = some, 2 = a little, 3 = a lot, 4 = complete
- Primary endpoint AUC, assumed to be normal with $\sigma=5$
- Randomize patients to 7 doses, labelled 1, 2, 3, 4, 5, 6, 7, or placebo
- Goal: Demonstrate POC and estimate the dose-response curve in a single phase 2 trial

Options for Patient Allocation

Suppose we intend to test the drug on 120 patients; 40 on placebo, 80 on drug. How should we allocate the 80 patients?

- 1. Conventional Method: Randomize equally to the seven doses
- **2 Response Adaptive.** Randomize in cohorts. Use the results of previous cohort to change the randomization fraction for the next cohort by Bayesian methods

Postulate a Dose-Response Model

• 4-parameter logistic regression model for subject i, dose j

$$Y_{ij} = eta + rac{\delta}{(1+e^{(heta-d_i)/ au})} + \epsilon_{ij}$$

- Different choices of $\beta, \delta, \theta, \tau$ yield different shapes
- We don't know the correct shape
- Simulate data from many different shapes and see how well the Bayesian allocation scheme assigns patients, regardless of shape

Likely Dose-Response Scenarios

Regardless of which dose-response curve is the true one, the Bayesian algorithm should find it and allocate most patients to its sloping part

Bayesian Adaptive Randomization

- 1. Start with a "flat" (non-informative) prior for model parameters
- 2. Create 10 cohorts of size 12 (4 to placebo, 8 to doses)
- 3. Assign subjects to doses with equal probability for first cohort
- 4. Use responses of subjects to compute postrior distribution using MCMC simulation
- 5. Compute an "effectiveness criterion" for each possible dose, if assigned to the next subject
 - Since we are targeting sloping part of curve, effectiveness criterion is sum of expected response variances at 25th and 75th quantiles
- 6. Assign assign the next cohort to doses with probabilities proportional to their effectiveness criteria
- 7. Repeat steps 3, 4, 5 until trial sample size is reached

Simulation Demo: Scenarios 6 & 7

Criteria for Comparison

• PoC:

Power of trend test

(slope in linear regression).

• Dose-finding:

Statistical efficiency at each dose (Mean Squared Error of Standard Design)/(MSE of Adaptive Design).

(1000 simulations used for calculations)

Proof-of-Concept

Scenario	Power of Standard	Power of Adaptive				
Coentario	Design	Design				
1	5.3	5.4				
2	49.4	84.0				
3	49.4	67.2				
4	95.8	100				
5	95.8	99.2				
6	99.9	100				
7	99.9	100				

Efficiency of Adaptive

Comparative dose-finding efficiency of adaptive design

		Doses											
		1	2	3	4	5	6	7					
	1	5.8	6.4	6.5	5.8	5.1	3.6	2.0					
arios	2	2.7	2.0	2.2	3.4	3.6	3.6	2.6					
	3	5.7	4.9	3.6	2.5	2.1	2.0	1.7					
ene	4	2.7	1.2	2.0	3.6	4.0	3.5	2.8					
So	5	5.6	5.6	4.2	2.2	1.4	2.0	1.8					
	6	2.4	1.6	2.5	3.3	3.1	2.6	2.1					
	7	5.6	5.7	4.6	2.3	1.5	<mark>2.3</mark>	1.8					
		Interesting part of the Dose Response curve											

The adaptive design is more efficient (>1) for all scenarios and all doses.

The average efficiency is 3.3 over all doses and scenarios.

For the interesting part of the dose response curve it is 2.1.

Conclusions

- Bayesian algorithm assigns more patients to the interesting part of the dose-response curve
- Hence can estimate responses more accurately with fewer patients
- Can demonstrate proof of concept with greater power
- Dominates over fixed allocation with respect to efficiency of estimating response

Case 2: Sample Size Re-Estimation

- Two-arm clinical trial of relief for fibromyalgia
- Primary endpoint: decrease in Numeric Rating Scale (NRS) pain score at week-12

• Sponsor has limited experience with the device and endpoint. Unable to determine sample size

Sample Size Formula

- What sample size is needed to detect an average NRS improvement of δ in this patient population with (1β) power, using a one-sided level- α test?
- Sample size depends on both δ and σ^2 (the variance in NRS between subjects)

$$N=\sigma^2\left[rac{z_lpha+z_eta}{\delta}
ight]^2$$

• Sponsor needs to specify δ and σ but can only guess at their values

Option 1: Two Separate Trials

- \bullet Run a small exploratory trial to get an idea of δ and σ
- \bullet Run a second confirmatory trial, adequately powered to detect the estimated δ
- Practical Problems:
 - White space between the two trials (due to closing and opening sites, IRB approval, management buy-in, etc.)
 - If the first trial does not show statistical significance,
 often difficult to get funding for the second trial
 - Small companies often wish to show significance on a single trial and then license the technology to large pharma

Option 2: A Single Two-Stage Trial

- Plan initially for a sample size of 200 patients
- After 100 patients have completed, calculate conditional power (CP) using unblinded estimates of δ and σ . Then:
 - complete the trial with no change if CP is high
 - increase the sample size if CP is medium
 - terminate for futility if CP is low
- Statistical and Practical Problems
 - Choosing the initial sample size
 - Criteria for sample size increase and futility termination
 - Preventing inflation of type-1 error
 - Avoiding possibility of bias due to premature unblinding

Initial Sample Size Calculation

- Assume average pain reduction of 1 point for placebo arm and 2 points for treatment arm
- Estimate from other NRS data that $\sigma \approx 2.15$
- Powered trial to detect $\delta = 1$ (with $\sigma = 2.15$) on a one-sided level-0.025 test
- Enroll 200 subjects (100/arm) to achieve 90.5% power
- \bullet Great uncertainty about δ and σ

Futility Stopping and Sample Size Increase at Interim

- Interim analysis, after 100 subjects have completed 12 weeks of follow-up
- Compute conditional power at interim analysis:

 CP_{200} = conditional power if final sample size is 200

 CP_{400} = conditional power if final sample size is 400

- If $CP_{200} > 90\%$ continue with no sample size change
- If $CP_{400} < 50\%$ terminate for futility
- Else continue with sample size increase that achieves 90% conditional power, up to maximum 400 subjects

The Conditional Power Formula

- Let N = total sample size; $n_1 =$ sample size at interim
- Define the information fraction $t_1 = (n_1/N)$
- Suppose we obtain estimates $\hat{\delta}_1$ and $\hat{\sigma}_1$ at the interim look
- Then the conditional power is calculated as

$$\mathsf{CP}(\hat{\delta}_1) = 1 - \Phi \left\{ rac{c_lpha}{\sqrt{1-t_1}} - rac{z_1\sqrt{t_1}}{\sqrt{1-t_1}} - 2 \left[rac{\hat{\delta}_1}{\hat{\sigma}_1}
ight] \sqrt{(N-n_1)}
ight\}$$

where c_{lpha} is the critical cut-off and $z_1 = \hat{\delta}_1/{
m se}(\hat{\delta}_1)$

How Good is this Design?

Relax the Futility Criterion

Eliminate the Futility Criterion

Power: (1) fixed-sample design; (2) adaptive design with 50% futility rule; (3) adaptive design with 10% futility rule; (4) Adaptive design with no futility rule

Without the Futility Boundary, Type-1 Error is Inflated

🕮 East 5 - PocockAdaptive15April08.es5 📃 🗖 🗙															
Eile Edit View Inse	ert <u>C</u> harts	<u>T</u> ools	Prefere	nces <u>V</u>	<u>V</u> indow <u>H</u>	<u>t</u> elp					Туре	e a ques	tion for l	help 🖣	- 8 ×
	DE PA BA E	h >	UN	∫p ⊞		1 1/6 1/	HI TS	S S+ S			3	% 👻	?		
C23 • f	2.15			- Annotation		COLUMN TRANSPORT									
Normal Superiority	Triale: Tw	o-Sa	mple T	oet-	Differer	ace of	Means	(Chen	DeMe	e-l an	Simulat	ion)			
Plan Details	Plan Details Simulation Boundaries							Overall Simulation Results						^	
1-Sided or 2-Sided Test	1-Sided	Look			Boundary			Simulated	9. 20. 22. 20.	Avg.	# Rejecting # Rejecting Total Simulations			ulations	
Significance Level (α)	0.025	# S	ample Size	H0-	H0+	H1-	H1+	Test Stat.	Avg. Info.	Sample	но	H1	Count	%	
Power (1 - β)	0.905360739	1	100.00		6.0000		-6.0000	0.3163		Size					
Assigned Fraction (Treatment)	0.5	2	200.00		1.9600		1.9600	1.5098	20.73	383.26	5571	94429	100000	100.00%	
Planned Number of Looks	2	3													
Spacing of Looks	Equal	4					-		1						
Hypothesis to be Rejected	H0 or H1 (NB)	5													
Boundary Family	SpF (Pub)	6													
Boundary to Reject H0	Gm (-20)	7													
Boundary to Reject H1	Gm (-4)	8													
Difference of Means (o_1)	1.0	9													
Standard Deviation (σ)	2.15	10													
Maximum Sample Size	200	11													
		12													
			6		A			Total	20.73	383.26	5571	94429	100000		
Design Outputs								%	0.		5.57%	94.43%			
Max. Sample Size (Nmax)	200								Simu	lation Res	ults for Ada	pted I rial	Only		
Max. Information (Imax)	10.8167	1000	4 -		1			4 5000	01.40	004 70	0000	04000	05000	400.000	
Simulation Paramet	ers	Ē	~					1.5098	21.18	391.70	3992	91608	95600	100.00%	
Difference of Means	0.0000														
Standard Deviation	2.1500	itice	Sample Size										_		
Ose Ninax Till L LOOKS, L =	10,0000	12		:0 4	00 470	200	250								
Criterion for Rescaling, Will, O_hat Mev & het	10,0000	inal	. I	ν υ 1	00 150	200	250	-							
Min Usable Sample Size	200	- E -	2 -		1										
Max Lisable Sample Size	400	1 4	30		/										
Desired Conditional Power (Cn)	0.9000		4 -		1				1						
Number of Trials	100000		-		1			Total	21.18	391.70	3992	91608	95600		
Refresh Every 'n' Trials. n =	10000	1 -	67		•			%	2		4.18%	95.82%			
Simulation Starting Seed 46540 - Reject H0 - Reject H1 - Test Statistic															
Run Single Step Stop Reset Image: Contract of the second se															
Trial # = 100000 100000 -															
Simulation Seed = 46540															
H + + H Design Plan1	_CHW_SIM	(Plani	2_CHW_SI	м/	<										>
Ready			ana nan												

Preserving the Type-1 Error

The following are the stage-1 and stage-2 data:

- (n_1, n_2) are initially planned sample sizes for the two stages
- $(\hat{\delta}_1 \text{ is the stage-1 estimate of } \delta$ from stage-1 data
- $n_2^* \geq n_2$ is the adaptively increased stage-2 sample size
- $\hat{\delta}_2^*$ is the estimate of δ from independent stage-2 data
- How can we construct a level- α test of H_0 : $\delta = 0$ after a data dependent sample size increase?

Constructing a Level- α Test

1. CHW Test: Cui, Hung and Wang (1999)

$$\sqrt{rac{n_1}{n_1+n_2}} imesrac{\hat{\delta}_1}{{
m se}(\hat{\delta}_1)}+\sqrt{rac{n_2}{n_1+n_2}} imesrac{\hat{\delta}_2^*}{{
m se}(\hat{\delta}_1)}\geq C_lpha$$

This test is guaranteed to preserve the type-1 error

2. Conventional Test: Wald (195?)

$$\sqrt{rac{n_1}{n_1+n_2^*}} imesrac{\hat{\delta}_1}{{
m se}(\hat{\delta}_1)}+\sqrt{rac{n_2^*}{n_1+n_2^*}} imesrac{\hat{\delta}_2^*}{{
m se}(\hat{\delta}_1)}\geq C_lpha$$

This test may or may not preserve the type-1 error if there is a sample size change

CHW Test Preserves the α

When Does Conventional Test Preserve the α ?

The type-1 error of the conventional test is preserved despite a sample size change, in the following situations:

- 1. If sample size increase is unrelated to the observed $\hat{\delta}$
- 2. If there is a suitable futility boundary to act as a brake on the posible error inflation
- 3. If the conditional power at the interim analysis exceeds 50% (Chen, DeMets and Lan, *Statistics in Medicine*, 2004)

Attractiveness of Conventional Method

- Utilizes classical Wald statistic; no down-weighting of second cohort!
- standard methods for hypothesis testing
- standard methods for parameter estimation
- nevertheless permits data dependent sample size increase in certain circumstances

Recommendation to Sponsor

- Build in the option for a sample size increase at the interim
- Second chance to get get the right sample size
- Could boost conditional power to 90%
- Dominates over fixed sample design in terms of unconditional power
- Use the 10% futility boundary and conventional test

A Final Take-Away Message

Adaptive trials require a considerable amount of planning up-front. One of the most versatile tools for the planning phase is simulation

- The simulations clarify the risks and benefits of the proposed approach by putting probabilities on each possible outcome
- The simulations facilitate better communication with the FDA
- The simulations facilitate greater communication between the various members of the study team by showing how different design options and trial outcomes will have different implications for:
 - patient recruitment
 - drug supply
 - economic analyses
 - clinical outcomes
 - statistical power
 - regulatory concerns

